| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvdszzq.1 |  |-  N = ( A / B ) | 
						
							| 2 |  | dvdszzq.2 |  |-  ( ph -> P e. Prime ) | 
						
							| 3 |  | dvdszzq.3 |  |-  ( ph -> N e. ZZ ) | 
						
							| 4 |  | dvdszzq.4 |  |-  ( ph -> B e. ZZ ) | 
						
							| 5 |  | dvdszzq.5 |  |-  ( ph -> B =/= 0 ) | 
						
							| 6 |  | dvdszzq.6 |  |-  ( ph -> P || A ) | 
						
							| 7 |  | dvdszzq.7 |  |-  ( ph -> -. P || B ) | 
						
							| 8 | 3 | zcnd |  |-  ( ph -> N e. CC ) | 
						
							| 9 | 4 | zcnd |  |-  ( ph -> B e. CC ) | 
						
							| 10 |  | dvdszrcl |  |-  ( P || A -> ( P e. ZZ /\ A e. ZZ ) ) | 
						
							| 11 | 10 | simprd |  |-  ( P || A -> A e. ZZ ) | 
						
							| 12 | 6 11 | syl |  |-  ( ph -> A e. ZZ ) | 
						
							| 13 | 12 | zcnd |  |-  ( ph -> A e. CC ) | 
						
							| 14 | 8 9 13 5 | ldiv |  |-  ( ph -> ( ( N x. B ) = A <-> N = ( A / B ) ) ) | 
						
							| 15 | 1 14 | mpbiri |  |-  ( ph -> ( N x. B ) = A ) | 
						
							| 16 | 6 15 | breqtrrd |  |-  ( ph -> P || ( N x. B ) ) | 
						
							| 17 |  | euclemma |  |-  ( ( P e. Prime /\ N e. ZZ /\ B e. ZZ ) -> ( P || ( N x. B ) <-> ( P || N \/ P || B ) ) ) | 
						
							| 18 | 17 | biimpa |  |-  ( ( ( P e. Prime /\ N e. ZZ /\ B e. ZZ ) /\ P || ( N x. B ) ) -> ( P || N \/ P || B ) ) | 
						
							| 19 | 2 3 4 16 18 | syl31anc |  |-  ( ph -> ( P || N \/ P || B ) ) | 
						
							| 20 |  | orcom |  |-  ( ( P || N \/ P || B ) <-> ( P || B \/ P || N ) ) | 
						
							| 21 |  | df-or |  |-  ( ( P || B \/ P || N ) <-> ( -. P || B -> P || N ) ) | 
						
							| 22 | 20 21 | sylbb |  |-  ( ( P || N \/ P || B ) -> ( -. P || B -> P || N ) ) | 
						
							| 23 | 19 7 22 | sylc |  |-  ( ph -> P || N ) |