Metamath Proof Explorer


Theorem dveel2ALT

Description: Alternate proof of dveel2 using ax-c16 instead of ax-5 . (Contributed by NM, 10-May-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dveel2ALT
|- ( -. A. x x = y -> ( z e. y -> A. x z e. y ) )

Proof

Step Hyp Ref Expression
1 ax5el
 |-  ( z e. w -> A. x z e. w )
2 ax5el
 |-  ( z e. y -> A. w z e. y )
3 elequ2
 |-  ( w = y -> ( z e. w <-> z e. y ) )
4 1 2 3 dvelimh
 |-  ( -. A. x x = y -> ( z e. y -> A. x z e. y ) )