Metamath Proof Explorer


Theorem dveeq2

Description: Quantifier introduction when one pair of variables is distinct. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jan-2002) (Revised by NM, 20-Jul-2015) Remove dependency on ax-11 . (Revised by Wolf Lammen, 8-Sep-2018) (New usage is discouraged.)

Ref Expression
Assertion dveeq2
|- ( -. A. x x = y -> ( z = y -> A. x z = y ) )

Proof

Step Hyp Ref Expression
1 nfeqf2
 |-  ( -. A. x x = y -> F/ x z = y )
2 1 nf5rd
 |-  ( -. A. x x = y -> ( z = y -> A. x z = y ) )