Metamath Proof Explorer


Theorem dveeq2-o

Description: Quantifier introduction when one pair of variables is distinct. Version of dveeq2 using ax-c15 . (Contributed by NM, 2-Jan-2002) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dveeq2-o
|- ( -. A. x x = y -> ( z = y -> A. x z = y ) )

Proof

Step Hyp Ref Expression
1 ax-5
 |-  ( z = w -> A. x z = w )
2 ax-5
 |-  ( z = y -> A. w z = y )
3 equequ2
 |-  ( w = y -> ( z = w <-> z = y ) )
4 1 2 3 dvelimf-o
 |-  ( -. A. x x = y -> ( z = y -> A. x z = y ) )