Metamath Proof Explorer


Theorem dveeq2ALT

Description: Alternate proof of dveeq2 , shorter but requiring ax-11 . (Contributed by NM, 2-Jan-2002) (Revised by NM, 20-Jul-2015) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion dveeq2ALT
|- ( -. A. x x = y -> ( z = y -> A. x z = y ) )

Proof

Step Hyp Ref Expression
1 equequ2
 |-  ( w = y -> ( z = w <-> z = y ) )
2 1 dvelimv
 |-  ( -. A. x x = y -> ( z = y -> A. x z = y ) )