| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvfcn |
|- ( CC _D exp ) : dom ( CC _D exp ) --> CC |
| 2 |
|
dvbsss |
|- dom ( CC _D exp ) C_ CC |
| 3 |
|
subcl |
|- ( ( z e. CC /\ x e. CC ) -> ( z - x ) e. CC ) |
| 4 |
3
|
ancoms |
|- ( ( x e. CC /\ z e. CC ) -> ( z - x ) e. CC ) |
| 5 |
|
efadd |
|- ( ( x e. CC /\ ( z - x ) e. CC ) -> ( exp ` ( x + ( z - x ) ) ) = ( ( exp ` x ) x. ( exp ` ( z - x ) ) ) ) |
| 6 |
4 5
|
syldan |
|- ( ( x e. CC /\ z e. CC ) -> ( exp ` ( x + ( z - x ) ) ) = ( ( exp ` x ) x. ( exp ` ( z - x ) ) ) ) |
| 7 |
|
pncan3 |
|- ( ( x e. CC /\ z e. CC ) -> ( x + ( z - x ) ) = z ) |
| 8 |
7
|
fveq2d |
|- ( ( x e. CC /\ z e. CC ) -> ( exp ` ( x + ( z - x ) ) ) = ( exp ` z ) ) |
| 9 |
6 8
|
eqtr3d |
|- ( ( x e. CC /\ z e. CC ) -> ( ( exp ` x ) x. ( exp ` ( z - x ) ) ) = ( exp ` z ) ) |
| 10 |
9
|
mpteq2dva |
|- ( x e. CC -> ( z e. CC |-> ( ( exp ` x ) x. ( exp ` ( z - x ) ) ) ) = ( z e. CC |-> ( exp ` z ) ) ) |
| 11 |
|
cnex |
|- CC e. _V |
| 12 |
11
|
a1i |
|- ( x e. CC -> CC e. _V ) |
| 13 |
|
fvexd |
|- ( ( x e. CC /\ z e. CC ) -> ( exp ` x ) e. _V ) |
| 14 |
|
fvexd |
|- ( ( x e. CC /\ z e. CC ) -> ( exp ` ( z - x ) ) e. _V ) |
| 15 |
|
fconstmpt |
|- ( CC X. { ( exp ` x ) } ) = ( z e. CC |-> ( exp ` x ) ) |
| 16 |
15
|
a1i |
|- ( x e. CC -> ( CC X. { ( exp ` x ) } ) = ( z e. CC |-> ( exp ` x ) ) ) |
| 17 |
|
eqidd |
|- ( x e. CC -> ( z e. CC |-> ( exp ` ( z - x ) ) ) = ( z e. CC |-> ( exp ` ( z - x ) ) ) ) |
| 18 |
12 13 14 16 17
|
offval2 |
|- ( x e. CC -> ( ( CC X. { ( exp ` x ) } ) oF x. ( z e. CC |-> ( exp ` ( z - x ) ) ) ) = ( z e. CC |-> ( ( exp ` x ) x. ( exp ` ( z - x ) ) ) ) ) |
| 19 |
|
eff |
|- exp : CC --> CC |
| 20 |
19
|
a1i |
|- ( x e. CC -> exp : CC --> CC ) |
| 21 |
20
|
feqmptd |
|- ( x e. CC -> exp = ( z e. CC |-> ( exp ` z ) ) ) |
| 22 |
10 18 21
|
3eqtr4d |
|- ( x e. CC -> ( ( CC X. { ( exp ` x ) } ) oF x. ( z e. CC |-> ( exp ` ( z - x ) ) ) ) = exp ) |
| 23 |
22
|
oveq2d |
|- ( x e. CC -> ( CC _D ( ( CC X. { ( exp ` x ) } ) oF x. ( z e. CC |-> ( exp ` ( z - x ) ) ) ) ) = ( CC _D exp ) ) |
| 24 |
|
efcl |
|- ( x e. CC -> ( exp ` x ) e. CC ) |
| 25 |
|
fconstg |
|- ( ( exp ` x ) e. CC -> ( CC X. { ( exp ` x ) } ) : CC --> { ( exp ` x ) } ) |
| 26 |
24 25
|
syl |
|- ( x e. CC -> ( CC X. { ( exp ` x ) } ) : CC --> { ( exp ` x ) } ) |
| 27 |
24
|
snssd |
|- ( x e. CC -> { ( exp ` x ) } C_ CC ) |
| 28 |
26 27
|
fssd |
|- ( x e. CC -> ( CC X. { ( exp ` x ) } ) : CC --> CC ) |
| 29 |
|
ssidd |
|- ( x e. CC -> CC C_ CC ) |
| 30 |
|
efcl |
|- ( ( z - x ) e. CC -> ( exp ` ( z - x ) ) e. CC ) |
| 31 |
4 30
|
syl |
|- ( ( x e. CC /\ z e. CC ) -> ( exp ` ( z - x ) ) e. CC ) |
| 32 |
31
|
fmpttd |
|- ( x e. CC -> ( z e. CC |-> ( exp ` ( z - x ) ) ) : CC --> CC ) |
| 33 |
|
c0ex |
|- 0 e. _V |
| 34 |
33
|
snid |
|- 0 e. { 0 } |
| 35 |
|
opelxpi |
|- ( ( x e. CC /\ 0 e. { 0 } ) -> <. x , 0 >. e. ( CC X. { 0 } ) ) |
| 36 |
34 35
|
mpan2 |
|- ( x e. CC -> <. x , 0 >. e. ( CC X. { 0 } ) ) |
| 37 |
|
dvconst |
|- ( ( exp ` x ) e. CC -> ( CC _D ( CC X. { ( exp ` x ) } ) ) = ( CC X. { 0 } ) ) |
| 38 |
24 37
|
syl |
|- ( x e. CC -> ( CC _D ( CC X. { ( exp ` x ) } ) ) = ( CC X. { 0 } ) ) |
| 39 |
36 38
|
eleqtrrd |
|- ( x e. CC -> <. x , 0 >. e. ( CC _D ( CC X. { ( exp ` x ) } ) ) ) |
| 40 |
|
df-br |
|- ( x ( CC _D ( CC X. { ( exp ` x ) } ) ) 0 <-> <. x , 0 >. e. ( CC _D ( CC X. { ( exp ` x ) } ) ) ) |
| 41 |
39 40
|
sylibr |
|- ( x e. CC -> x ( CC _D ( CC X. { ( exp ` x ) } ) ) 0 ) |
| 42 |
20 4
|
cofmpt |
|- ( x e. CC -> ( exp o. ( z e. CC |-> ( z - x ) ) ) = ( z e. CC |-> ( exp ` ( z - x ) ) ) ) |
| 43 |
42
|
oveq2d |
|- ( x e. CC -> ( CC _D ( exp o. ( z e. CC |-> ( z - x ) ) ) ) = ( CC _D ( z e. CC |-> ( exp ` ( z - x ) ) ) ) ) |
| 44 |
4
|
fmpttd |
|- ( x e. CC -> ( z e. CC |-> ( z - x ) ) : CC --> CC ) |
| 45 |
|
oveq1 |
|- ( z = x -> ( z - x ) = ( x - x ) ) |
| 46 |
|
eqid |
|- ( z e. CC |-> ( z - x ) ) = ( z e. CC |-> ( z - x ) ) |
| 47 |
|
ovex |
|- ( x - x ) e. _V |
| 48 |
45 46 47
|
fvmpt |
|- ( x e. CC -> ( ( z e. CC |-> ( z - x ) ) ` x ) = ( x - x ) ) |
| 49 |
|
subid |
|- ( x e. CC -> ( x - x ) = 0 ) |
| 50 |
48 49
|
eqtrd |
|- ( x e. CC -> ( ( z e. CC |-> ( z - x ) ) ` x ) = 0 ) |
| 51 |
|
dveflem |
|- 0 ( CC _D exp ) 1 |
| 52 |
50 51
|
eqbrtrdi |
|- ( x e. CC -> ( ( z e. CC |-> ( z - x ) ) ` x ) ( CC _D exp ) 1 ) |
| 53 |
|
1ex |
|- 1 e. _V |
| 54 |
53
|
snid |
|- 1 e. { 1 } |
| 55 |
|
opelxpi |
|- ( ( x e. CC /\ 1 e. { 1 } ) -> <. x , 1 >. e. ( CC X. { 1 } ) ) |
| 56 |
54 55
|
mpan2 |
|- ( x e. CC -> <. x , 1 >. e. ( CC X. { 1 } ) ) |
| 57 |
|
cnelprrecn |
|- CC e. { RR , CC } |
| 58 |
57
|
a1i |
|- ( x e. CC -> CC e. { RR , CC } ) |
| 59 |
|
simpr |
|- ( ( x e. CC /\ z e. CC ) -> z e. CC ) |
| 60 |
|
1cnd |
|- ( ( x e. CC /\ z e. CC ) -> 1 e. CC ) |
| 61 |
58
|
dvmptid |
|- ( x e. CC -> ( CC _D ( z e. CC |-> z ) ) = ( z e. CC |-> 1 ) ) |
| 62 |
|
simpl |
|- ( ( x e. CC /\ z e. CC ) -> x e. CC ) |
| 63 |
|
0cnd |
|- ( ( x e. CC /\ z e. CC ) -> 0 e. CC ) |
| 64 |
|
id |
|- ( x e. CC -> x e. CC ) |
| 65 |
58 64
|
dvmptc |
|- ( x e. CC -> ( CC _D ( z e. CC |-> x ) ) = ( z e. CC |-> 0 ) ) |
| 66 |
58 59 60 61 62 63 65
|
dvmptsub |
|- ( x e. CC -> ( CC _D ( z e. CC |-> ( z - x ) ) ) = ( z e. CC |-> ( 1 - 0 ) ) ) |
| 67 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 68 |
67
|
mpteq2i |
|- ( z e. CC |-> ( 1 - 0 ) ) = ( z e. CC |-> 1 ) |
| 69 |
|
fconstmpt |
|- ( CC X. { 1 } ) = ( z e. CC |-> 1 ) |
| 70 |
68 69
|
eqtr4i |
|- ( z e. CC |-> ( 1 - 0 ) ) = ( CC X. { 1 } ) |
| 71 |
66 70
|
eqtrdi |
|- ( x e. CC -> ( CC _D ( z e. CC |-> ( z - x ) ) ) = ( CC X. { 1 } ) ) |
| 72 |
56 71
|
eleqtrrd |
|- ( x e. CC -> <. x , 1 >. e. ( CC _D ( z e. CC |-> ( z - x ) ) ) ) |
| 73 |
|
df-br |
|- ( x ( CC _D ( z e. CC |-> ( z - x ) ) ) 1 <-> <. x , 1 >. e. ( CC _D ( z e. CC |-> ( z - x ) ) ) ) |
| 74 |
72 73
|
sylibr |
|- ( x e. CC -> x ( CC _D ( z e. CC |-> ( z - x ) ) ) 1 ) |
| 75 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 76 |
20 29 44 29 29 29 52 74 75
|
dvcobr |
|- ( x e. CC -> x ( CC _D ( exp o. ( z e. CC |-> ( z - x ) ) ) ) ( 1 x. 1 ) ) |
| 77 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 78 |
76 77
|
breqtrdi |
|- ( x e. CC -> x ( CC _D ( exp o. ( z e. CC |-> ( z - x ) ) ) ) 1 ) |
| 79 |
43 78
|
breqdi |
|- ( x e. CC -> x ( CC _D ( z e. CC |-> ( exp ` ( z - x ) ) ) ) 1 ) |
| 80 |
28 29 32 29 29 41 79 75
|
dvmulbr |
|- ( x e. CC -> x ( CC _D ( ( CC X. { ( exp ` x ) } ) oF x. ( z e. CC |-> ( exp ` ( z - x ) ) ) ) ) ( ( 0 x. ( ( z e. CC |-> ( exp ` ( z - x ) ) ) ` x ) ) + ( 1 x. ( ( CC X. { ( exp ` x ) } ) ` x ) ) ) ) |
| 81 |
32 64
|
ffvelcdmd |
|- ( x e. CC -> ( ( z e. CC |-> ( exp ` ( z - x ) ) ) ` x ) e. CC ) |
| 82 |
81
|
mul02d |
|- ( x e. CC -> ( 0 x. ( ( z e. CC |-> ( exp ` ( z - x ) ) ) ` x ) ) = 0 ) |
| 83 |
|
fvex |
|- ( exp ` x ) e. _V |
| 84 |
83
|
fvconst2 |
|- ( x e. CC -> ( ( CC X. { ( exp ` x ) } ) ` x ) = ( exp ` x ) ) |
| 85 |
84
|
oveq2d |
|- ( x e. CC -> ( 1 x. ( ( CC X. { ( exp ` x ) } ) ` x ) ) = ( 1 x. ( exp ` x ) ) ) |
| 86 |
24
|
mullidd |
|- ( x e. CC -> ( 1 x. ( exp ` x ) ) = ( exp ` x ) ) |
| 87 |
85 86
|
eqtrd |
|- ( x e. CC -> ( 1 x. ( ( CC X. { ( exp ` x ) } ) ` x ) ) = ( exp ` x ) ) |
| 88 |
82 87
|
oveq12d |
|- ( x e. CC -> ( ( 0 x. ( ( z e. CC |-> ( exp ` ( z - x ) ) ) ` x ) ) + ( 1 x. ( ( CC X. { ( exp ` x ) } ) ` x ) ) ) = ( 0 + ( exp ` x ) ) ) |
| 89 |
24
|
addlidd |
|- ( x e. CC -> ( 0 + ( exp ` x ) ) = ( exp ` x ) ) |
| 90 |
88 89
|
eqtrd |
|- ( x e. CC -> ( ( 0 x. ( ( z e. CC |-> ( exp ` ( z - x ) ) ) ` x ) ) + ( 1 x. ( ( CC X. { ( exp ` x ) } ) ` x ) ) ) = ( exp ` x ) ) |
| 91 |
80 90
|
breqtrd |
|- ( x e. CC -> x ( CC _D ( ( CC X. { ( exp ` x ) } ) oF x. ( z e. CC |-> ( exp ` ( z - x ) ) ) ) ) ( exp ` x ) ) |
| 92 |
23 91
|
breqdi |
|- ( x e. CC -> x ( CC _D exp ) ( exp ` x ) ) |
| 93 |
|
vex |
|- x e. _V |
| 94 |
93 83
|
breldm |
|- ( x ( CC _D exp ) ( exp ` x ) -> x e. dom ( CC _D exp ) ) |
| 95 |
92 94
|
syl |
|- ( x e. CC -> x e. dom ( CC _D exp ) ) |
| 96 |
95
|
ssriv |
|- CC C_ dom ( CC _D exp ) |
| 97 |
2 96
|
eqssi |
|- dom ( CC _D exp ) = CC |
| 98 |
97
|
feq2i |
|- ( ( CC _D exp ) : dom ( CC _D exp ) --> CC <-> ( CC _D exp ) : CC --> CC ) |
| 99 |
1 98
|
mpbi |
|- ( CC _D exp ) : CC --> CC |
| 100 |
99
|
a1i |
|- ( T. -> ( CC _D exp ) : CC --> CC ) |
| 101 |
100
|
feqmptd |
|- ( T. -> ( CC _D exp ) = ( x e. CC |-> ( ( CC _D exp ) ` x ) ) ) |
| 102 |
|
ffun |
|- ( ( CC _D exp ) : dom ( CC _D exp ) --> CC -> Fun ( CC _D exp ) ) |
| 103 |
1 102
|
ax-mp |
|- Fun ( CC _D exp ) |
| 104 |
|
funbrfv |
|- ( Fun ( CC _D exp ) -> ( x ( CC _D exp ) ( exp ` x ) -> ( ( CC _D exp ) ` x ) = ( exp ` x ) ) ) |
| 105 |
103 92 104
|
mpsyl |
|- ( x e. CC -> ( ( CC _D exp ) ` x ) = ( exp ` x ) ) |
| 106 |
105
|
mpteq2ia |
|- ( x e. CC |-> ( ( CC _D exp ) ` x ) ) = ( x e. CC |-> ( exp ` x ) ) |
| 107 |
101 106
|
eqtrdi |
|- ( T. -> ( CC _D exp ) = ( x e. CC |-> ( exp ` x ) ) ) |
| 108 |
19
|
a1i |
|- ( T. -> exp : CC --> CC ) |
| 109 |
108
|
feqmptd |
|- ( T. -> exp = ( x e. CC |-> ( exp ` x ) ) ) |
| 110 |
107 109
|
eqtr4d |
|- ( T. -> ( CC _D exp ) = exp ) |
| 111 |
110
|
mptru |
|- ( CC _D exp ) = exp |