Step |
Hyp |
Ref |
Expression |
1 |
|
0cn |
|- 0 e. CC |
2 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
3 |
2
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
4 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
5 |
4
|
ntrtop |
|- ( ( TopOpen ` CCfld ) e. Top -> ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = CC ) |
6 |
3 5
|
ax-mp |
|- ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = CC |
7 |
1 6
|
eleqtrri |
|- 0 e. ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) |
8 |
|
ax-1cn |
|- 1 e. CC |
9 |
|
1rp |
|- 1 e. RR+ |
10 |
|
ifcl |
|- ( ( x e. RR+ /\ 1 e. RR+ ) -> if ( x <_ 1 , x , 1 ) e. RR+ ) |
11 |
9 10
|
mpan2 |
|- ( x e. RR+ -> if ( x <_ 1 , x , 1 ) e. RR+ ) |
12 |
|
eldifsn |
|- ( w e. ( CC \ { 0 } ) <-> ( w e. CC /\ w =/= 0 ) ) |
13 |
|
simprl |
|- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> w e. CC ) |
14 |
13
|
subid1d |
|- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( w - 0 ) = w ) |
15 |
14
|
fveq2d |
|- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( abs ` ( w - 0 ) ) = ( abs ` w ) ) |
16 |
15
|
breq1d |
|- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) <-> ( abs ` w ) < if ( x <_ 1 , x , 1 ) ) ) |
17 |
13
|
abscld |
|- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( abs ` w ) e. RR ) |
18 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
19 |
18
|
adantr |
|- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> x e. RR ) |
20 |
|
1red |
|- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> 1 e. RR ) |
21 |
|
ltmin |
|- ( ( ( abs ` w ) e. RR /\ x e. RR /\ 1 e. RR ) -> ( ( abs ` w ) < if ( x <_ 1 , x , 1 ) <-> ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) ) |
22 |
17 19 20 21
|
syl3anc |
|- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( ( abs ` w ) < if ( x <_ 1 , x , 1 ) <-> ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) ) |
23 |
16 22
|
bitrd |
|- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) <-> ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) ) |
24 |
|
simplr |
|- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( w e. CC /\ w =/= 0 ) ) |
25 |
24 12
|
sylibr |
|- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> w e. ( CC \ { 0 } ) ) |
26 |
|
fveq2 |
|- ( z = w -> ( exp ` z ) = ( exp ` w ) ) |
27 |
26
|
oveq1d |
|- ( z = w -> ( ( exp ` z ) - 1 ) = ( ( exp ` w ) - 1 ) ) |
28 |
|
id |
|- ( z = w -> z = w ) |
29 |
27 28
|
oveq12d |
|- ( z = w -> ( ( ( exp ` z ) - 1 ) / z ) = ( ( ( exp ` w ) - 1 ) / w ) ) |
30 |
|
eqid |
|- ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) = ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) |
31 |
|
ovex |
|- ( ( ( exp ` w ) - 1 ) / w ) e. _V |
32 |
29 30 31
|
fvmpt |
|- ( w e. ( CC \ { 0 } ) -> ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) = ( ( ( exp ` w ) - 1 ) / w ) ) |
33 |
25 32
|
syl |
|- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) = ( ( ( exp ` w ) - 1 ) / w ) ) |
34 |
33
|
fvoveq1d |
|- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) = ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) |
35 |
|
simplrl |
|- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> w e. CC ) |
36 |
|
efcl |
|- ( w e. CC -> ( exp ` w ) e. CC ) |
37 |
35 36
|
syl |
|- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( exp ` w ) e. CC ) |
38 |
|
1cnd |
|- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> 1 e. CC ) |
39 |
37 38
|
subcld |
|- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( ( exp ` w ) - 1 ) e. CC ) |
40 |
|
simplrr |
|- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> w =/= 0 ) |
41 |
39 35 40
|
divcld |
|- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( ( ( exp ` w ) - 1 ) / w ) e. CC ) |
42 |
41 38
|
subcld |
|- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) e. CC ) |
43 |
42
|
abscld |
|- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) e. RR ) |
44 |
35
|
abscld |
|- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` w ) e. RR ) |
45 |
|
simpll |
|- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> x e. RR+ ) |
46 |
45
|
rpred |
|- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> x e. RR ) |
47 |
|
abscl |
|- ( w e. CC -> ( abs ` w ) e. RR ) |
48 |
47
|
ad2antrr |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` w ) e. RR ) |
49 |
36
|
ad2antrr |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( exp ` w ) e. CC ) |
50 |
|
subcl |
|- ( ( ( exp ` w ) e. CC /\ 1 e. CC ) -> ( ( exp ` w ) - 1 ) e. CC ) |
51 |
49 8 50
|
sylancl |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( exp ` w ) - 1 ) e. CC ) |
52 |
|
simpll |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> w e. CC ) |
53 |
|
simplr |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> w =/= 0 ) |
54 |
51 52 53
|
divcld |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( exp ` w ) - 1 ) / w ) e. CC ) |
55 |
|
1cnd |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> 1 e. CC ) |
56 |
54 55
|
subcld |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) e. CC ) |
57 |
56
|
abscld |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) e. RR ) |
58 |
48 57
|
remulcld |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) e. RR ) |
59 |
48
|
resqcld |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) ^ 2 ) e. RR ) |
60 |
|
3re |
|- 3 e. RR |
61 |
|
4nn |
|- 4 e. NN |
62 |
|
nndivre |
|- ( ( 3 e. RR /\ 4 e. NN ) -> ( 3 / 4 ) e. RR ) |
63 |
60 61 62
|
mp2an |
|- ( 3 / 4 ) e. RR |
64 |
|
remulcl |
|- ( ( ( ( abs ` w ) ^ 2 ) e. RR /\ ( 3 / 4 ) e. RR ) -> ( ( ( abs ` w ) ^ 2 ) x. ( 3 / 4 ) ) e. RR ) |
65 |
59 63 64
|
sylancl |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( abs ` w ) ^ 2 ) x. ( 3 / 4 ) ) e. RR ) |
66 |
51 52
|
subcld |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( exp ` w ) - 1 ) - w ) e. CC ) |
67 |
66 52 53
|
divcan2d |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w x. ( ( ( ( exp ` w ) - 1 ) - w ) / w ) ) = ( ( ( exp ` w ) - 1 ) - w ) ) |
68 |
51 52 52 53
|
divsubdird |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( ( exp ` w ) - 1 ) - w ) / w ) = ( ( ( ( exp ` w ) - 1 ) / w ) - ( w / w ) ) ) |
69 |
52 53
|
dividd |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w / w ) = 1 ) |
70 |
69
|
oveq2d |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( ( exp ` w ) - 1 ) / w ) - ( w / w ) ) = ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) |
71 |
68 70
|
eqtrd |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( ( exp ` w ) - 1 ) - w ) / w ) = ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) |
72 |
71
|
oveq2d |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w x. ( ( ( ( exp ` w ) - 1 ) - w ) / w ) ) = ( w x. ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) |
73 |
49 55 52
|
subsub4d |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( exp ` w ) - 1 ) - w ) = ( ( exp ` w ) - ( 1 + w ) ) ) |
74 |
|
addcl |
|- ( ( 1 e. CC /\ w e. CC ) -> ( 1 + w ) e. CC ) |
75 |
8 52 74
|
sylancr |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 1 + w ) e. CC ) |
76 |
|
2nn0 |
|- 2 e. NN0 |
77 |
|
eqid |
|- ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) |
78 |
77
|
eftlcl |
|- ( ( w e. CC /\ 2 e. NN0 ) -> sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) |
79 |
52 76 78
|
sylancl |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) e. CC ) |
80 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
81 |
|
1nn0 |
|- 1 e. NN0 |
82 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
83 |
|
0nn0 |
|- 0 e. NN0 |
84 |
|
0cnd |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> 0 e. CC ) |
85 |
77
|
efval2 |
|- ( w e. CC -> ( exp ` w ) = sum_ k e. NN0 ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) |
86 |
85
|
ad2antrr |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( exp ` w ) = sum_ k e. NN0 ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) |
87 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
88 |
87
|
sumeq1i |
|- sum_ k e. NN0 ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) = sum_ k e. ( ZZ>= ` 0 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) |
89 |
86 88
|
eqtr2di |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> sum_ k e. ( ZZ>= ` 0 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) = ( exp ` w ) ) |
90 |
89
|
oveq2d |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 0 + sum_ k e. ( ZZ>= ` 0 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) = ( 0 + ( exp ` w ) ) ) |
91 |
49
|
addid2d |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 0 + ( exp ` w ) ) = ( exp ` w ) ) |
92 |
90 91
|
eqtr2d |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( exp ` w ) = ( 0 + sum_ k e. ( ZZ>= ` 0 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) ) |
93 |
|
eft0val |
|- ( w e. CC -> ( ( w ^ 0 ) / ( ! ` 0 ) ) = 1 ) |
94 |
93
|
ad2antrr |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( w ^ 0 ) / ( ! ` 0 ) ) = 1 ) |
95 |
94
|
oveq2d |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 0 + ( ( w ^ 0 ) / ( ! ` 0 ) ) ) = ( 0 + 1 ) ) |
96 |
95 82
|
eqtr4di |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 0 + ( ( w ^ 0 ) / ( ! ` 0 ) ) ) = 1 ) |
97 |
77 82 83 52 84 92 96
|
efsep |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( exp ` w ) = ( 1 + sum_ k e. ( ZZ>= ` 1 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) ) |
98 |
|
exp1 |
|- ( w e. CC -> ( w ^ 1 ) = w ) |
99 |
98
|
ad2antrr |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w ^ 1 ) = w ) |
100 |
99
|
oveq1d |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( w ^ 1 ) / ( ! ` 1 ) ) = ( w / ( ! ` 1 ) ) ) |
101 |
|
fac1 |
|- ( ! ` 1 ) = 1 |
102 |
101
|
oveq2i |
|- ( w / ( ! ` 1 ) ) = ( w / 1 ) |
103 |
100 102
|
eqtrdi |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( w ^ 1 ) / ( ! ` 1 ) ) = ( w / 1 ) ) |
104 |
|
div1 |
|- ( w e. CC -> ( w / 1 ) = w ) |
105 |
104
|
ad2antrr |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w / 1 ) = w ) |
106 |
103 105
|
eqtrd |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( w ^ 1 ) / ( ! ` 1 ) ) = w ) |
107 |
106
|
oveq2d |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 1 + ( ( w ^ 1 ) / ( ! ` 1 ) ) ) = ( 1 + w ) ) |
108 |
77 80 81 52 55 97 107
|
efsep |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( exp ` w ) = ( ( 1 + w ) + sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) ) |
109 |
75 79 108
|
mvrladdd |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( exp ` w ) - ( 1 + w ) ) = sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) |
110 |
73 109
|
eqtrd |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( exp ` w ) - 1 ) - w ) = sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) |
111 |
67 72 110
|
3eqtr3d |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w x. ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) = sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) |
112 |
111
|
fveq2d |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` ( w x. ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) = ( abs ` sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) ) |
113 |
52 56
|
absmuld |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` ( w x. ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) = ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) ) |
114 |
112 113
|
eqtr3d |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) = ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) ) |
115 |
|
eqid |
|- ( n e. NN0 |-> ( ( ( abs ` w ) ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( ( abs ` w ) ^ n ) / ( ! ` n ) ) ) |
116 |
|
eqid |
|- ( n e. NN0 |-> ( ( ( ( abs ` w ) ^ 2 ) / ( ! ` 2 ) ) x. ( ( 1 / ( 2 + 1 ) ) ^ n ) ) ) = ( n e. NN0 |-> ( ( ( ( abs ` w ) ^ 2 ) / ( ! ` 2 ) ) x. ( ( 1 / ( 2 + 1 ) ) ^ n ) ) ) |
117 |
|
2nn |
|- 2 e. NN |
118 |
117
|
a1i |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> 2 e. NN ) |
119 |
|
1red |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> 1 e. RR ) |
120 |
|
simpr |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` w ) < 1 ) |
121 |
48 119 120
|
ltled |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` w ) <_ 1 ) |
122 |
77 115 116 118 52 121
|
eftlub |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` sum_ k e. ( ZZ>= ` 2 ) ( ( n e. NN0 |-> ( ( w ^ n ) / ( ! ` n ) ) ) ` k ) ) <_ ( ( ( abs ` w ) ^ 2 ) x. ( ( 2 + 1 ) / ( ( ! ` 2 ) x. 2 ) ) ) ) |
123 |
114 122
|
eqbrtrrd |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) <_ ( ( ( abs ` w ) ^ 2 ) x. ( ( 2 + 1 ) / ( ( ! ` 2 ) x. 2 ) ) ) ) |
124 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
125 |
|
fac2 |
|- ( ! ` 2 ) = 2 |
126 |
125
|
oveq1i |
|- ( ( ! ` 2 ) x. 2 ) = ( 2 x. 2 ) |
127 |
|
2t2e4 |
|- ( 2 x. 2 ) = 4 |
128 |
126 127
|
eqtr2i |
|- 4 = ( ( ! ` 2 ) x. 2 ) |
129 |
124 128
|
oveq12i |
|- ( 3 / 4 ) = ( ( 2 + 1 ) / ( ( ! ` 2 ) x. 2 ) ) |
130 |
129
|
oveq2i |
|- ( ( ( abs ` w ) ^ 2 ) x. ( 3 / 4 ) ) = ( ( ( abs ` w ) ^ 2 ) x. ( ( 2 + 1 ) / ( ( ! ` 2 ) x. 2 ) ) ) |
131 |
123 130
|
breqtrrdi |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) <_ ( ( ( abs ` w ) ^ 2 ) x. ( 3 / 4 ) ) ) |
132 |
63
|
a1i |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 3 / 4 ) e. RR ) |
133 |
48
|
sqge0d |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> 0 <_ ( ( abs ` w ) ^ 2 ) ) |
134 |
|
1re |
|- 1 e. RR |
135 |
|
3lt4 |
|- 3 < 4 |
136 |
|
4cn |
|- 4 e. CC |
137 |
136
|
mulid1i |
|- ( 4 x. 1 ) = 4 |
138 |
135 137
|
breqtrri |
|- 3 < ( 4 x. 1 ) |
139 |
|
4re |
|- 4 e. RR |
140 |
|
4pos |
|- 0 < 4 |
141 |
139 140
|
pm3.2i |
|- ( 4 e. RR /\ 0 < 4 ) |
142 |
|
ltdivmul |
|- ( ( 3 e. RR /\ 1 e. RR /\ ( 4 e. RR /\ 0 < 4 ) ) -> ( ( 3 / 4 ) < 1 <-> 3 < ( 4 x. 1 ) ) ) |
143 |
60 134 141 142
|
mp3an |
|- ( ( 3 / 4 ) < 1 <-> 3 < ( 4 x. 1 ) ) |
144 |
138 143
|
mpbir |
|- ( 3 / 4 ) < 1 |
145 |
63 134 144
|
ltleii |
|- ( 3 / 4 ) <_ 1 |
146 |
145
|
a1i |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( 3 / 4 ) <_ 1 ) |
147 |
132 119 59 133 146
|
lemul2ad |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( abs ` w ) ^ 2 ) x. ( 3 / 4 ) ) <_ ( ( ( abs ` w ) ^ 2 ) x. 1 ) ) |
148 |
48
|
recnd |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` w ) e. CC ) |
149 |
148
|
sqcld |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) ^ 2 ) e. CC ) |
150 |
149
|
mulid1d |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( abs ` w ) ^ 2 ) x. 1 ) = ( ( abs ` w ) ^ 2 ) ) |
151 |
147 150
|
breqtrd |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( ( abs ` w ) ^ 2 ) x. ( 3 / 4 ) ) <_ ( ( abs ` w ) ^ 2 ) ) |
152 |
58 65 59 131 151
|
letrd |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) <_ ( ( abs ` w ) ^ 2 ) ) |
153 |
148
|
sqvald |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) ^ 2 ) = ( ( abs ` w ) x. ( abs ` w ) ) ) |
154 |
152 153
|
breqtrd |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) <_ ( ( abs ` w ) x. ( abs ` w ) ) ) |
155 |
|
absgt0 |
|- ( w e. CC -> ( w =/= 0 <-> 0 < ( abs ` w ) ) ) |
156 |
155
|
ad2antrr |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( w =/= 0 <-> 0 < ( abs ` w ) ) ) |
157 |
53 156
|
mpbid |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> 0 < ( abs ` w ) ) |
158 |
48 157
|
elrpd |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` w ) e. RR+ ) |
159 |
57 48 158
|
lemul2d |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) <_ ( abs ` w ) <-> ( ( abs ` w ) x. ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) ) <_ ( ( abs ` w ) x. ( abs ` w ) ) ) ) |
160 |
154 159
|
mpbird |
|- ( ( ( w e. CC /\ w =/= 0 ) /\ ( abs ` w ) < 1 ) -> ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) <_ ( abs ` w ) ) |
161 |
160
|
ad2ant2l |
|- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) <_ ( abs ` w ) ) |
162 |
|
simprl |
|- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` w ) < x ) |
163 |
43 44 46 161 162
|
lelttrd |
|- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` ( ( ( ( exp ` w ) - 1 ) / w ) - 1 ) ) < x ) |
164 |
34 163
|
eqbrtrd |
|- ( ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) /\ ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) |
165 |
164
|
ex |
|- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( ( ( abs ` w ) < x /\ ( abs ` w ) < 1 ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) |
166 |
23 165
|
sylbid |
|- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) |
167 |
166
|
adantld |
|- ( ( x e. RR+ /\ ( w e. CC /\ w =/= 0 ) ) -> ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) |
168 |
12 167
|
sylan2b |
|- ( ( x e. RR+ /\ w e. ( CC \ { 0 } ) ) -> ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) |
169 |
168
|
ralrimiva |
|- ( x e. RR+ -> A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) |
170 |
|
brimralrspcev |
|- ( ( if ( x <_ 1 , x , 1 ) e. RR+ /\ A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < if ( x <_ 1 , x , 1 ) ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) -> E. y e. RR+ A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < y ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) |
171 |
11 169 170
|
syl2anc |
|- ( x e. RR+ -> E. y e. RR+ A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < y ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) |
172 |
171
|
rgen |
|- A. x e. RR+ E. y e. RR+ A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < y ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) |
173 |
|
eldifi |
|- ( z e. ( CC \ { 0 } ) -> z e. CC ) |
174 |
|
efcl |
|- ( z e. CC -> ( exp ` z ) e. CC ) |
175 |
173 174
|
syl |
|- ( z e. ( CC \ { 0 } ) -> ( exp ` z ) e. CC ) |
176 |
|
1cnd |
|- ( z e. ( CC \ { 0 } ) -> 1 e. CC ) |
177 |
175 176
|
subcld |
|- ( z e. ( CC \ { 0 } ) -> ( ( exp ` z ) - 1 ) e. CC ) |
178 |
|
eldifsni |
|- ( z e. ( CC \ { 0 } ) -> z =/= 0 ) |
179 |
177 173 178
|
divcld |
|- ( z e. ( CC \ { 0 } ) -> ( ( ( exp ` z ) - 1 ) / z ) e. CC ) |
180 |
30 179
|
fmpti |
|- ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) : ( CC \ { 0 } ) --> CC |
181 |
180
|
a1i |
|- ( T. -> ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) : ( CC \ { 0 } ) --> CC ) |
182 |
|
difssd |
|- ( T. -> ( CC \ { 0 } ) C_ CC ) |
183 |
|
0cnd |
|- ( T. -> 0 e. CC ) |
184 |
181 182 183
|
ellimc3 |
|- ( T. -> ( 1 e. ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) limCC 0 ) <-> ( 1 e. CC /\ A. x e. RR+ E. y e. RR+ A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < y ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) ) ) |
185 |
184
|
mptru |
|- ( 1 e. ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) limCC 0 ) <-> ( 1 e. CC /\ A. x e. RR+ E. y e. RR+ A. w e. ( CC \ { 0 } ) ( ( w =/= 0 /\ ( abs ` ( w - 0 ) ) < y ) -> ( abs ` ( ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) ` w ) - 1 ) ) < x ) ) ) |
186 |
8 172 185
|
mpbir2an |
|- 1 e. ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) limCC 0 ) |
187 |
2
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
188 |
187
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
189 |
173
|
subid1d |
|- ( z e. ( CC \ { 0 } ) -> ( z - 0 ) = z ) |
190 |
189
|
oveq2d |
|- ( z e. ( CC \ { 0 } ) -> ( ( ( exp ` z ) - ( exp ` 0 ) ) / ( z - 0 ) ) = ( ( ( exp ` z ) - ( exp ` 0 ) ) / z ) ) |
191 |
|
ef0 |
|- ( exp ` 0 ) = 1 |
192 |
191
|
oveq2i |
|- ( ( exp ` z ) - ( exp ` 0 ) ) = ( ( exp ` z ) - 1 ) |
193 |
192
|
oveq1i |
|- ( ( ( exp ` z ) - ( exp ` 0 ) ) / z ) = ( ( ( exp ` z ) - 1 ) / z ) |
194 |
190 193
|
eqtr2di |
|- ( z e. ( CC \ { 0 } ) -> ( ( ( exp ` z ) - 1 ) / z ) = ( ( ( exp ` z ) - ( exp ` 0 ) ) / ( z - 0 ) ) ) |
195 |
194
|
mpteq2ia |
|- ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) = ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - ( exp ` 0 ) ) / ( z - 0 ) ) ) |
196 |
|
ssidd |
|- ( T. -> CC C_ CC ) |
197 |
|
eff |
|- exp : CC --> CC |
198 |
197
|
a1i |
|- ( T. -> exp : CC --> CC ) |
199 |
188 2 195 196 198 196
|
eldv |
|- ( T. -> ( 0 ( CC _D exp ) 1 <-> ( 0 e. ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) /\ 1 e. ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) limCC 0 ) ) ) ) |
200 |
199
|
mptru |
|- ( 0 ( CC _D exp ) 1 <-> ( 0 e. ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) /\ 1 e. ( ( z e. ( CC \ { 0 } ) |-> ( ( ( exp ` z ) - 1 ) / z ) ) limCC 0 ) ) ) |
201 |
7 186 200
|
mpbir2an |
|- 0 ( CC _D exp ) 1 |