Metamath Proof Explorer


Theorem dvelimdc

Description: Deduction form of dvelimc . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 8-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses dvelimdc.1
|- F/ x ph
dvelimdc.2
|- F/ z ph
dvelimdc.3
|- ( ph -> F/_ x A )
dvelimdc.4
|- ( ph -> F/_ z B )
dvelimdc.5
|- ( ph -> ( z = y -> A = B ) )
Assertion dvelimdc
|- ( ph -> ( -. A. x x = y -> F/_ x B ) )

Proof

Step Hyp Ref Expression
1 dvelimdc.1
 |-  F/ x ph
2 dvelimdc.2
 |-  F/ z ph
3 dvelimdc.3
 |-  ( ph -> F/_ x A )
4 dvelimdc.4
 |-  ( ph -> F/_ z B )
5 dvelimdc.5
 |-  ( ph -> ( z = y -> A = B ) )
6 nfv
 |-  F/ w ( ph /\ -. A. x x = y )
7 3 nfcrd
 |-  ( ph -> F/ x w e. A )
8 4 nfcrd
 |-  ( ph -> F/ z w e. B )
9 eleq2
 |-  ( A = B -> ( w e. A <-> w e. B ) )
10 5 9 syl6
 |-  ( ph -> ( z = y -> ( w e. A <-> w e. B ) ) )
11 1 2 7 8 10 dvelimdf
 |-  ( ph -> ( -. A. x x = y -> F/ x w e. B ) )
12 11 imp
 |-  ( ( ph /\ -. A. x x = y ) -> F/ x w e. B )
13 6 12 nfcd
 |-  ( ( ph /\ -. A. x x = y ) -> F/_ x B )
14 13 ex
 |-  ( ph -> ( -. A. x x = y -> F/_ x B ) )