Step |
Hyp |
Ref |
Expression |
1 |
|
dvelimdc.1 |
|- F/ x ph |
2 |
|
dvelimdc.2 |
|- F/ z ph |
3 |
|
dvelimdc.3 |
|- ( ph -> F/_ x A ) |
4 |
|
dvelimdc.4 |
|- ( ph -> F/_ z B ) |
5 |
|
dvelimdc.5 |
|- ( ph -> ( z = y -> A = B ) ) |
6 |
|
nfv |
|- F/ w ( ph /\ -. A. x x = y ) |
7 |
3
|
nfcrd |
|- ( ph -> F/ x w e. A ) |
8 |
4
|
nfcrd |
|- ( ph -> F/ z w e. B ) |
9 |
|
eleq2 |
|- ( A = B -> ( w e. A <-> w e. B ) ) |
10 |
5 9
|
syl6 |
|- ( ph -> ( z = y -> ( w e. A <-> w e. B ) ) ) |
11 |
1 2 7 8 10
|
dvelimdf |
|- ( ph -> ( -. A. x x = y -> F/ x w e. B ) ) |
12 |
11
|
imp |
|- ( ( ph /\ -. A. x x = y ) -> F/ x w e. B ) |
13 |
6 12
|
nfcd |
|- ( ( ph /\ -. A. x x = y ) -> F/_ x B ) |
14 |
13
|
ex |
|- ( ph -> ( -. A. x x = y -> F/_ x B ) ) |