Step |
Hyp |
Ref |
Expression |
1 |
|
dvelimhw.1 |
|- ( ph -> A. x ph ) |
2 |
|
dvelimhw.2 |
|- ( ps -> A. z ps ) |
3 |
|
dvelimhw.3 |
|- ( z = y -> ( ph <-> ps ) ) |
4 |
|
dvelimhw.4 |
|- ( -. A. x x = y -> ( y = z -> A. x y = z ) ) |
5 |
|
nfv |
|- F/ z -. A. x x = y |
6 |
|
equcom |
|- ( z = y <-> y = z ) |
7 |
|
nfna1 |
|- F/ x -. A. x x = y |
8 |
7 4
|
nf5d |
|- ( -. A. x x = y -> F/ x y = z ) |
9 |
6 8
|
nfxfrd |
|- ( -. A. x x = y -> F/ x z = y ) |
10 |
1
|
nf5i |
|- F/ x ph |
11 |
10
|
a1i |
|- ( -. A. x x = y -> F/ x ph ) |
12 |
9 11
|
nfimd |
|- ( -. A. x x = y -> F/ x ( z = y -> ph ) ) |
13 |
5 12
|
nfald |
|- ( -. A. x x = y -> F/ x A. z ( z = y -> ph ) ) |
14 |
2 3
|
equsalhw |
|- ( A. z ( z = y -> ph ) <-> ps ) |
15 |
14
|
nfbii |
|- ( F/ x A. z ( z = y -> ph ) <-> F/ x ps ) |
16 |
13 15
|
sylib |
|- ( -. A. x x = y -> F/ x ps ) |
17 |
16
|
nf5rd |
|- ( -. A. x x = y -> ( ps -> A. x ps ) ) |