Metamath Proof Explorer


Theorem dvelimnf

Description: Version of dvelim using "not free" notation. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Mario Carneiro, 9-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses dvelimnf.1
|- F/ x ph
dvelimnf.2
|- ( z = y -> ( ph <-> ps ) )
Assertion dvelimnf
|- ( -. A. x x = y -> F/ x ps )

Proof

Step Hyp Ref Expression
1 dvelimnf.1
 |-  F/ x ph
2 dvelimnf.2
 |-  ( z = y -> ( ph <-> ps ) )
3 nfv
 |-  F/ z ps
4 1 3 2 dvelimf
 |-  ( -. A. x x = y -> F/ x ps )