Step |
Hyp |
Ref |
Expression |
1 |
|
dveq0.a |
|- ( ph -> A e. RR ) |
2 |
|
dveq0.b |
|- ( ph -> B e. RR ) |
3 |
|
dveq0.c |
|- ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) |
4 |
|
dveq0.d |
|- ( ph -> ( RR _D F ) = ( ( A (,) B ) X. { 0 } ) ) |
5 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> CC ) -> F : ( A [,] B ) --> CC ) |
6 |
3 5
|
syl |
|- ( ph -> F : ( A [,] B ) --> CC ) |
7 |
6
|
ffnd |
|- ( ph -> F Fn ( A [,] B ) ) |
8 |
|
fvex |
|- ( F ` A ) e. _V |
9 |
|
fnconstg |
|- ( ( F ` A ) e. _V -> ( ( A [,] B ) X. { ( F ` A ) } ) Fn ( A [,] B ) ) |
10 |
8 9
|
mp1i |
|- ( ph -> ( ( A [,] B ) X. { ( F ` A ) } ) Fn ( A [,] B ) ) |
11 |
8
|
fvconst2 |
|- ( x e. ( A [,] B ) -> ( ( ( A [,] B ) X. { ( F ` A ) } ) ` x ) = ( F ` A ) ) |
12 |
11
|
adantl |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( ( A [,] B ) X. { ( F ` A ) } ) ` x ) = ( F ` A ) ) |
13 |
6
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> F : ( A [,] B ) --> CC ) |
14 |
1
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> A e. RR ) |
15 |
14
|
rexrd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> A e. RR* ) |
16 |
2
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR ) |
17 |
16
|
rexrd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR* ) |
18 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
19 |
1 2 18
|
syl2anc |
|- ( ph -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
20 |
19
|
biimpa |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. RR /\ A <_ x /\ x <_ B ) ) |
21 |
20
|
simp1d |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. RR ) |
22 |
20
|
simp2d |
|- ( ( ph /\ x e. ( A [,] B ) ) -> A <_ x ) |
23 |
20
|
simp3d |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x <_ B ) |
24 |
14 21 16 22 23
|
letrd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> A <_ B ) |
25 |
|
lbicc2 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
26 |
15 17 24 25
|
syl3anc |
|- ( ( ph /\ x e. ( A [,] B ) ) -> A e. ( A [,] B ) ) |
27 |
13 26
|
ffvelrnd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` A ) e. CC ) |
28 |
6
|
ffvelrnda |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. CC ) |
29 |
27 28
|
subcld |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( F ` A ) - ( F ` x ) ) e. CC ) |
30 |
|
simpr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. ( A [,] B ) ) |
31 |
26 30
|
jca |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( A e. ( A [,] B ) /\ x e. ( A [,] B ) ) ) |
32 |
4
|
dmeqd |
|- ( ph -> dom ( RR _D F ) = dom ( ( A (,) B ) X. { 0 } ) ) |
33 |
|
c0ex |
|- 0 e. _V |
34 |
33
|
snnz |
|- { 0 } =/= (/) |
35 |
|
dmxp |
|- ( { 0 } =/= (/) -> dom ( ( A (,) B ) X. { 0 } ) = ( A (,) B ) ) |
36 |
34 35
|
ax-mp |
|- dom ( ( A (,) B ) X. { 0 } ) = ( A (,) B ) |
37 |
32 36
|
eqtrdi |
|- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
38 |
|
0red |
|- ( ph -> 0 e. RR ) |
39 |
4
|
fveq1d |
|- ( ph -> ( ( RR _D F ) ` y ) = ( ( ( A (,) B ) X. { 0 } ) ` y ) ) |
40 |
33
|
fvconst2 |
|- ( y e. ( A (,) B ) -> ( ( ( A (,) B ) X. { 0 } ) ` y ) = 0 ) |
41 |
39 40
|
sylan9eq |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( ( RR _D F ) ` y ) = 0 ) |
42 |
41
|
abs00bd |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( abs ` ( ( RR _D F ) ` y ) ) = 0 ) |
43 |
|
0le0 |
|- 0 <_ 0 |
44 |
42 43
|
eqbrtrdi |
|- ( ( ph /\ y e. ( A (,) B ) ) -> ( abs ` ( ( RR _D F ) ` y ) ) <_ 0 ) |
45 |
1 2 3 37 38 44
|
dvlip |
|- ( ( ph /\ ( A e. ( A [,] B ) /\ x e. ( A [,] B ) ) ) -> ( abs ` ( ( F ` A ) - ( F ` x ) ) ) <_ ( 0 x. ( abs ` ( A - x ) ) ) ) |
46 |
31 45
|
syldan |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( abs ` ( ( F ` A ) - ( F ` x ) ) ) <_ ( 0 x. ( abs ` ( A - x ) ) ) ) |
47 |
14
|
recnd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> A e. CC ) |
48 |
21
|
recnd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. CC ) |
49 |
47 48
|
subcld |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( A - x ) e. CC ) |
50 |
49
|
abscld |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( abs ` ( A - x ) ) e. RR ) |
51 |
50
|
recnd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( abs ` ( A - x ) ) e. CC ) |
52 |
51
|
mul02d |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( 0 x. ( abs ` ( A - x ) ) ) = 0 ) |
53 |
46 52
|
breqtrd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( abs ` ( ( F ` A ) - ( F ` x ) ) ) <_ 0 ) |
54 |
29
|
absge0d |
|- ( ( ph /\ x e. ( A [,] B ) ) -> 0 <_ ( abs ` ( ( F ` A ) - ( F ` x ) ) ) ) |
55 |
29
|
abscld |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( abs ` ( ( F ` A ) - ( F ` x ) ) ) e. RR ) |
56 |
|
0re |
|- 0 e. RR |
57 |
|
letri3 |
|- ( ( ( abs ` ( ( F ` A ) - ( F ` x ) ) ) e. RR /\ 0 e. RR ) -> ( ( abs ` ( ( F ` A ) - ( F ` x ) ) ) = 0 <-> ( ( abs ` ( ( F ` A ) - ( F ` x ) ) ) <_ 0 /\ 0 <_ ( abs ` ( ( F ` A ) - ( F ` x ) ) ) ) ) ) |
58 |
55 56 57
|
sylancl |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( abs ` ( ( F ` A ) - ( F ` x ) ) ) = 0 <-> ( ( abs ` ( ( F ` A ) - ( F ` x ) ) ) <_ 0 /\ 0 <_ ( abs ` ( ( F ` A ) - ( F ` x ) ) ) ) ) ) |
59 |
53 54 58
|
mpbir2and |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( abs ` ( ( F ` A ) - ( F ` x ) ) ) = 0 ) |
60 |
29 59
|
abs00d |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( F ` A ) - ( F ` x ) ) = 0 ) |
61 |
27 28 60
|
subeq0d |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` A ) = ( F ` x ) ) |
62 |
12 61
|
eqtr2d |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) = ( ( ( A [,] B ) X. { ( F ` A ) } ) ` x ) ) |
63 |
7 10 62
|
eqfnfvd |
|- ( ph -> F = ( ( A [,] B ) X. { ( F ` A ) } ) ) |