| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							oveq2 | 
							 |-  ( n = 1 -> ( x ^ n ) = ( x ^ 1 ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							mpteq2dv | 
							 |-  ( n = 1 -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ 1 ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							oveq2d | 
							 |-  ( n = 1 -> ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( CC _D ( x e. CC |-> ( x ^ 1 ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							id | 
							 |-  ( n = 1 -> n = 1 )  | 
						
						
							| 5 | 
							
								
							 | 
							oveq1 | 
							 |-  ( n = 1 -> ( n - 1 ) = ( 1 - 1 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							oveq2d | 
							 |-  ( n = 1 -> ( x ^ ( n - 1 ) ) = ( x ^ ( 1 - 1 ) ) )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							oveq12d | 
							 |-  ( n = 1 -> ( n x. ( x ^ ( n - 1 ) ) ) = ( 1 x. ( x ^ ( 1 - 1 ) ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							mpteq2dv | 
							 |-  ( n = 1 -> ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) = ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) )  | 
						
						
							| 9 | 
							
								3 8
							 | 
							eqeq12d | 
							 |-  ( n = 1 -> ( ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) <-> ( CC _D ( x e. CC |-> ( x ^ 1 ) ) ) = ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							oveq2 | 
							 |-  ( n = k -> ( x ^ n ) = ( x ^ k ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							mpteq2dv | 
							 |-  ( n = k -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ k ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							oveq2d | 
							 |-  ( n = k -> ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( CC _D ( x e. CC |-> ( x ^ k ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							id | 
							 |-  ( n = k -> n = k )  | 
						
						
							| 14 | 
							
								
							 | 
							oveq1 | 
							 |-  ( n = k -> ( n - 1 ) = ( k - 1 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							oveq2d | 
							 |-  ( n = k -> ( x ^ ( n - 1 ) ) = ( x ^ ( k - 1 ) ) )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							oveq12d | 
							 |-  ( n = k -> ( n x. ( x ^ ( n - 1 ) ) ) = ( k x. ( x ^ ( k - 1 ) ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							mpteq2dv | 
							 |-  ( n = k -> ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) )  | 
						
						
							| 18 | 
							
								12 17
							 | 
							eqeq12d | 
							 |-  ( n = k -> ( ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) <-> ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							oveq2 | 
							 |-  ( n = ( k + 1 ) -> ( x ^ n ) = ( x ^ ( k + 1 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							mpteq2dv | 
							 |-  ( n = ( k + 1 ) -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ ( k + 1 ) ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							oveq2d | 
							 |-  ( n = ( k + 1 ) -> ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							id | 
							 |-  ( n = ( k + 1 ) -> n = ( k + 1 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							oveq1 | 
							 |-  ( n = ( k + 1 ) -> ( n - 1 ) = ( ( k + 1 ) - 1 ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							oveq2d | 
							 |-  ( n = ( k + 1 ) -> ( x ^ ( n - 1 ) ) = ( x ^ ( ( k + 1 ) - 1 ) ) )  | 
						
						
							| 25 | 
							
								22 24
							 | 
							oveq12d | 
							 |-  ( n = ( k + 1 ) -> ( n x. ( x ^ ( n - 1 ) ) ) = ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							mpteq2dv | 
							 |-  ( n = ( k + 1 ) -> ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) = ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) )  | 
						
						
							| 27 | 
							
								21 26
							 | 
							eqeq12d | 
							 |-  ( n = ( k + 1 ) -> ( ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) <-> ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) = ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							oveq2 | 
							 |-  ( n = N -> ( x ^ n ) = ( x ^ N ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							mpteq2dv | 
							 |-  ( n = N -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ N ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							oveq2d | 
							 |-  ( n = N -> ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( CC _D ( x e. CC |-> ( x ^ N ) ) ) )  | 
						
						
							| 31 | 
							
								
							 | 
							id | 
							 |-  ( n = N -> n = N )  | 
						
						
							| 32 | 
							
								
							 | 
							oveq1 | 
							 |-  ( n = N -> ( n - 1 ) = ( N - 1 ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							oveq2d | 
							 |-  ( n = N -> ( x ^ ( n - 1 ) ) = ( x ^ ( N - 1 ) ) )  | 
						
						
							| 34 | 
							
								31 33
							 | 
							oveq12d | 
							 |-  ( n = N -> ( n x. ( x ^ ( n - 1 ) ) ) = ( N x. ( x ^ ( N - 1 ) ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							mpteq2dv | 
							 |-  ( n = N -> ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) = ( x e. CC |-> ( N x. ( x ^ ( N - 1 ) ) ) ) )  | 
						
						
							| 36 | 
							
								30 35
							 | 
							eqeq12d | 
							 |-  ( n = N -> ( ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) <-> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) )  | 
						
						
							| 37 | 
							
								
							 | 
							exp1 | 
							 |-  ( x e. CC -> ( x ^ 1 ) = x )  | 
						
						
							| 38 | 
							
								37
							 | 
							mpteq2ia | 
							 |-  ( x e. CC |-> ( x ^ 1 ) ) = ( x e. CC |-> x )  | 
						
						
							| 39 | 
							
								
							 | 
							mptresid | 
							 |-  ( _I |` CC ) = ( x e. CC |-> x )  | 
						
						
							| 40 | 
							
								38 39
							 | 
							eqtr4i | 
							 |-  ( x e. CC |-> ( x ^ 1 ) ) = ( _I |` CC )  | 
						
						
							| 41 | 
							
								40
							 | 
							oveq2i | 
							 |-  ( CC _D ( x e. CC |-> ( x ^ 1 ) ) ) = ( CC _D ( _I |` CC ) )  | 
						
						
							| 42 | 
							
								
							 | 
							1m1e0 | 
							 |-  ( 1 - 1 ) = 0  | 
						
						
							| 43 | 
							
								42
							 | 
							oveq2i | 
							 |-  ( x ^ ( 1 - 1 ) ) = ( x ^ 0 )  | 
						
						
							| 44 | 
							
								
							 | 
							exp0 | 
							 |-  ( x e. CC -> ( x ^ 0 ) = 1 )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							eqtrid | 
							 |-  ( x e. CC -> ( x ^ ( 1 - 1 ) ) = 1 )  | 
						
						
							| 46 | 
							
								45
							 | 
							oveq2d | 
							 |-  ( x e. CC -> ( 1 x. ( x ^ ( 1 - 1 ) ) ) = ( 1 x. 1 ) )  | 
						
						
							| 47 | 
							
								
							 | 
							1t1e1 | 
							 |-  ( 1 x. 1 ) = 1  | 
						
						
							| 48 | 
							
								46 47
							 | 
							eqtrdi | 
							 |-  ( x e. CC -> ( 1 x. ( x ^ ( 1 - 1 ) ) ) = 1 )  | 
						
						
							| 49 | 
							
								48
							 | 
							mpteq2ia | 
							 |-  ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) = ( x e. CC |-> 1 )  | 
						
						
							| 50 | 
							
								
							 | 
							fconstmpt | 
							 |-  ( CC X. { 1 } ) = ( x e. CC |-> 1 ) | 
						
						
							| 51 | 
							
								49 50
							 | 
							eqtr4i | 
							 |-  ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) = ( CC X. { 1 } ) | 
						
						
							| 52 | 
							
								
							 | 
							dvid | 
							 |-  ( CC _D ( _I |` CC ) ) = ( CC X. { 1 } ) | 
						
						
							| 53 | 
							
								51 52
							 | 
							eqtr4i | 
							 |-  ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) = ( CC _D ( _I |` CC ) )  | 
						
						
							| 54 | 
							
								41 53
							 | 
							eqtr4i | 
							 |-  ( CC _D ( x e. CC |-> ( x ^ 1 ) ) ) = ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) )  | 
						
						
							| 55 | 
							
								
							 | 
							nncn | 
							 |-  ( k e. NN -> k e. CC )  | 
						
						
							| 56 | 
							
								55
							 | 
							adantr | 
							 |-  ( ( k e. NN /\ x e. CC ) -> k e. CC )  | 
						
						
							| 57 | 
							
								
							 | 
							ax-1cn | 
							 |-  1 e. CC  | 
						
						
							| 58 | 
							
								
							 | 
							pncan | 
							 |-  ( ( k e. CC /\ 1 e. CC ) -> ( ( k + 1 ) - 1 ) = k )  | 
						
						
							| 59 | 
							
								56 57 58
							 | 
							sylancl | 
							 |-  ( ( k e. NN /\ x e. CC ) -> ( ( k + 1 ) - 1 ) = k )  | 
						
						
							| 60 | 
							
								59
							 | 
							oveq2d | 
							 |-  ( ( k e. NN /\ x e. CC ) -> ( x ^ ( ( k + 1 ) - 1 ) ) = ( x ^ k ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							oveq2d | 
							 |-  ( ( k e. NN /\ x e. CC ) -> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) = ( ( k + 1 ) x. ( x ^ k ) ) )  | 
						
						
							| 62 | 
							
								57
							 | 
							a1i | 
							 |-  ( ( k e. NN /\ x e. CC ) -> 1 e. CC )  | 
						
						
							| 63 | 
							
								
							 | 
							id | 
							 |-  ( x e. CC -> x e. CC )  | 
						
						
							| 64 | 
							
								
							 | 
							nnnn0 | 
							 |-  ( k e. NN -> k e. NN0 )  | 
						
						
							| 65 | 
							
								
							 | 
							expcl | 
							 |-  ( ( x e. CC /\ k e. NN0 ) -> ( x ^ k ) e. CC )  | 
						
						
							| 66 | 
							
								63 64 65
							 | 
							syl2anr | 
							 |-  ( ( k e. NN /\ x e. CC ) -> ( x ^ k ) e. CC )  | 
						
						
							| 67 | 
							
								56 62 66
							 | 
							adddird | 
							 |-  ( ( k e. NN /\ x e. CC ) -> ( ( k + 1 ) x. ( x ^ k ) ) = ( ( k x. ( x ^ k ) ) + ( 1 x. ( x ^ k ) ) ) )  | 
						
						
							| 68 | 
							
								66
							 | 
							mullidd | 
							 |-  ( ( k e. NN /\ x e. CC ) -> ( 1 x. ( x ^ k ) ) = ( x ^ k ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							oveq2d | 
							 |-  ( ( k e. NN /\ x e. CC ) -> ( ( k x. ( x ^ k ) ) + ( 1 x. ( x ^ k ) ) ) = ( ( k x. ( x ^ k ) ) + ( x ^ k ) ) )  | 
						
						
							| 70 | 
							
								61 67 69
							 | 
							3eqtrd | 
							 |-  ( ( k e. NN /\ x e. CC ) -> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) = ( ( k x. ( x ^ k ) ) + ( x ^ k ) ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							mpteq2dva | 
							 |-  ( k e. NN -> ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) = ( x e. CC |-> ( ( k x. ( x ^ k ) ) + ( x ^ k ) ) ) )  | 
						
						
							| 72 | 
							
								
							 | 
							cnex | 
							 |-  CC e. _V  | 
						
						
							| 73 | 
							
								72
							 | 
							a1i | 
							 |-  ( k e. NN -> CC e. _V )  | 
						
						
							| 74 | 
							
								56 66
							 | 
							mulcld | 
							 |-  ( ( k e. NN /\ x e. CC ) -> ( k x. ( x ^ k ) ) e. CC )  | 
						
						
							| 75 | 
							
								
							 | 
							nnm1nn0 | 
							 |-  ( k e. NN -> ( k - 1 ) e. NN0 )  | 
						
						
							| 76 | 
							
								
							 | 
							expcl | 
							 |-  ( ( x e. CC /\ ( k - 1 ) e. NN0 ) -> ( x ^ ( k - 1 ) ) e. CC )  | 
						
						
							| 77 | 
							
								63 75 76
							 | 
							syl2anr | 
							 |-  ( ( k e. NN /\ x e. CC ) -> ( x ^ ( k - 1 ) ) e. CC )  | 
						
						
							| 78 | 
							
								56 77
							 | 
							mulcld | 
							 |-  ( ( k e. NN /\ x e. CC ) -> ( k x. ( x ^ ( k - 1 ) ) ) e. CC )  | 
						
						
							| 79 | 
							
								
							 | 
							simpr | 
							 |-  ( ( k e. NN /\ x e. CC ) -> x e. CC )  | 
						
						
							| 80 | 
							
								
							 | 
							eqidd | 
							 |-  ( k e. NN -> ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) )  | 
						
						
							| 81 | 
							
								39
							 | 
							a1i | 
							 |-  ( k e. NN -> ( _I |` CC ) = ( x e. CC |-> x ) )  | 
						
						
							| 82 | 
							
								73 78 79 80 81
							 | 
							offval2 | 
							 |-  ( k e. NN -> ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) = ( x e. CC |-> ( ( k x. ( x ^ ( k - 1 ) ) ) x. x ) ) )  | 
						
						
							| 83 | 
							
								56 77 79
							 | 
							mulassd | 
							 |-  ( ( k e. NN /\ x e. CC ) -> ( ( k x. ( x ^ ( k - 1 ) ) ) x. x ) = ( k x. ( ( x ^ ( k - 1 ) ) x. x ) ) )  | 
						
						
							| 84 | 
							
								
							 | 
							expm1t | 
							 |-  ( ( x e. CC /\ k e. NN ) -> ( x ^ k ) = ( ( x ^ ( k - 1 ) ) x. x ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							ancoms | 
							 |-  ( ( k e. NN /\ x e. CC ) -> ( x ^ k ) = ( ( x ^ ( k - 1 ) ) x. x ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							oveq2d | 
							 |-  ( ( k e. NN /\ x e. CC ) -> ( k x. ( x ^ k ) ) = ( k x. ( ( x ^ ( k - 1 ) ) x. x ) ) )  | 
						
						
							| 87 | 
							
								83 86
							 | 
							eqtr4d | 
							 |-  ( ( k e. NN /\ x e. CC ) -> ( ( k x. ( x ^ ( k - 1 ) ) ) x. x ) = ( k x. ( x ^ k ) ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							mpteq2dva | 
							 |-  ( k e. NN -> ( x e. CC |-> ( ( k x. ( x ^ ( k - 1 ) ) ) x. x ) ) = ( x e. CC |-> ( k x. ( x ^ k ) ) ) )  | 
						
						
							| 89 | 
							
								82 88
							 | 
							eqtrd | 
							 |-  ( k e. NN -> ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) = ( x e. CC |-> ( k x. ( x ^ k ) ) ) )  | 
						
						
							| 90 | 
							
								52 50
							 | 
							eqtri | 
							 |-  ( CC _D ( _I |` CC ) ) = ( x e. CC |-> 1 )  | 
						
						
							| 91 | 
							
								90
							 | 
							a1i | 
							 |-  ( k e. NN -> ( CC _D ( _I |` CC ) ) = ( x e. CC |-> 1 ) )  | 
						
						
							| 92 | 
							
								
							 | 
							eqidd | 
							 |-  ( k e. NN -> ( x e. CC |-> ( x ^ k ) ) = ( x e. CC |-> ( x ^ k ) ) )  | 
						
						
							| 93 | 
							
								73 62 66 91 92
							 | 
							offval2 | 
							 |-  ( k e. NN -> ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( 1 x. ( x ^ k ) ) ) )  | 
						
						
							| 94 | 
							
								68
							 | 
							mpteq2dva | 
							 |-  ( k e. NN -> ( x e. CC |-> ( 1 x. ( x ^ k ) ) ) = ( x e. CC |-> ( x ^ k ) ) )  | 
						
						
							| 95 | 
							
								93 94
							 | 
							eqtrd | 
							 |-  ( k e. NN -> ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( x ^ k ) ) )  | 
						
						
							| 96 | 
							
								73 74 66 89 95
							 | 
							offval2 | 
							 |-  ( k e. NN -> ( ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) = ( x e. CC |-> ( ( k x. ( x ^ k ) ) + ( x ^ k ) ) ) )  | 
						
						
							| 97 | 
							
								71 96
							 | 
							eqtr4d | 
							 |-  ( k e. NN -> ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) = ( ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) )  | 
						
						
							| 98 | 
							
								
							 | 
							oveq1 | 
							 |-  ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) -> ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) oF x. ( _I |` CC ) ) = ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							oveq1d | 
							 |-  ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) -> ( ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) = ( ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) )  | 
						
						
							| 100 | 
							
								99
							 | 
							eqcomd | 
							 |-  ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) -> ( ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) = ( ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) )  | 
						
						
							| 101 | 
							
								97 100
							 | 
							sylan9eq | 
							 |-  ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) = ( ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) )  | 
						
						
							| 102 | 
							
								
							 | 
							cnelprrecn | 
							 |-  CC e. { RR , CC } | 
						
						
							| 103 | 
							
								102
							 | 
							a1i | 
							 |-  ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> CC e. { RR , CC } ) | 
						
						
							| 104 | 
							
								66
							 | 
							fmpttd | 
							 |-  ( k e. NN -> ( x e. CC |-> ( x ^ k ) ) : CC --> CC )  | 
						
						
							| 105 | 
							
								104
							 | 
							adantr | 
							 |-  ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( x e. CC |-> ( x ^ k ) ) : CC --> CC )  | 
						
						
							| 106 | 
							
								
							 | 
							f1oi | 
							 |-  ( _I |` CC ) : CC -1-1-onto-> CC  | 
						
						
							| 107 | 
							
								
							 | 
							f1of | 
							 |-  ( ( _I |` CC ) : CC -1-1-onto-> CC -> ( _I |` CC ) : CC --> CC )  | 
						
						
							| 108 | 
							
								106 107
							 | 
							mp1i | 
							 |-  ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( _I |` CC ) : CC --> CC )  | 
						
						
							| 109 | 
							
								
							 | 
							simpr | 
							 |-  ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) )  | 
						
						
							| 110 | 
							
								109
							 | 
							dmeqd | 
							 |-  ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> dom ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = dom ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) )  | 
						
						
							| 111 | 
							
								78
							 | 
							fmpttd | 
							 |-  ( k e. NN -> ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) : CC --> CC )  | 
						
						
							| 112 | 
							
								111
							 | 
							adantr | 
							 |-  ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) : CC --> CC )  | 
						
						
							| 113 | 
							
								112
							 | 
							fdmd | 
							 |-  ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> dom ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) = CC )  | 
						
						
							| 114 | 
							
								110 113
							 | 
							eqtrd | 
							 |-  ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> dom ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = CC )  | 
						
						
							| 115 | 
							
								
							 | 
							1ex | 
							 |-  1 e. _V  | 
						
						
							| 116 | 
							
								115
							 | 
							fconst | 
							 |-  ( CC X. { 1 } ) : CC --> { 1 } | 
						
						
							| 117 | 
							
								52
							 | 
							feq1i | 
							 |-  ( ( CC _D ( _I |` CC ) ) : CC --> { 1 } <-> ( CC X. { 1 } ) : CC --> { 1 } ) | 
						
						
							| 118 | 
							
								116 117
							 | 
							mpbir | 
							 |-  ( CC _D ( _I |` CC ) ) : CC --> { 1 } | 
						
						
							| 119 | 
							
								118
							 | 
							fdmi | 
							 |-  dom ( CC _D ( _I |` CC ) ) = CC  | 
						
						
							| 120 | 
							
								119
							 | 
							a1i | 
							 |-  ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> dom ( CC _D ( _I |` CC ) ) = CC )  | 
						
						
							| 121 | 
							
								103 105 108 114 120
							 | 
							dvmulf | 
							 |-  ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( CC _D ( ( x e. CC |-> ( x ^ k ) ) oF x. ( _I |` CC ) ) ) = ( ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) )  | 
						
						
							| 122 | 
							
								73 66 79 92 81
							 | 
							offval2 | 
							 |-  ( k e. NN -> ( ( x e. CC |-> ( x ^ k ) ) oF x. ( _I |` CC ) ) = ( x e. CC |-> ( ( x ^ k ) x. x ) ) )  | 
						
						
							| 123 | 
							
								
							 | 
							expp1 | 
							 |-  ( ( x e. CC /\ k e. NN0 ) -> ( x ^ ( k + 1 ) ) = ( ( x ^ k ) x. x ) )  | 
						
						
							| 124 | 
							
								63 64 123
							 | 
							syl2anr | 
							 |-  ( ( k e. NN /\ x e. CC ) -> ( x ^ ( k + 1 ) ) = ( ( x ^ k ) x. x ) )  | 
						
						
							| 125 | 
							
								124
							 | 
							mpteq2dva | 
							 |-  ( k e. NN -> ( x e. CC |-> ( x ^ ( k + 1 ) ) ) = ( x e. CC |-> ( ( x ^ k ) x. x ) ) )  | 
						
						
							| 126 | 
							
								122 125
							 | 
							eqtr4d | 
							 |-  ( k e. NN -> ( ( x e. CC |-> ( x ^ k ) ) oF x. ( _I |` CC ) ) = ( x e. CC |-> ( x ^ ( k + 1 ) ) ) )  | 
						
						
							| 127 | 
							
								126
							 | 
							oveq2d | 
							 |-  ( k e. NN -> ( CC _D ( ( x e. CC |-> ( x ^ k ) ) oF x. ( _I |` CC ) ) ) = ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) )  | 
						
						
							| 128 | 
							
								127
							 | 
							adantr | 
							 |-  ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( CC _D ( ( x e. CC |-> ( x ^ k ) ) oF x. ( _I |` CC ) ) ) = ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) )  | 
						
						
							| 129 | 
							
								101 121 128
							 | 
							3eqtr2rd | 
							 |-  ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) = ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) )  | 
						
						
							| 130 | 
							
								129
							 | 
							ex | 
							 |-  ( k e. NN -> ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) -> ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) = ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) ) )  | 
						
						
							| 131 | 
							
								9 18 27 36 54 130
							 | 
							nnind | 
							 |-  ( N e. NN -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> ( N x. ( x ^ ( N - 1 ) ) ) ) )  |