Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( n = 1 -> ( x ^ n ) = ( x ^ 1 ) ) |
2 |
1
|
mpteq2dv |
|- ( n = 1 -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ 1 ) ) ) |
3 |
2
|
oveq2d |
|- ( n = 1 -> ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( CC _D ( x e. CC |-> ( x ^ 1 ) ) ) ) |
4 |
|
id |
|- ( n = 1 -> n = 1 ) |
5 |
|
oveq1 |
|- ( n = 1 -> ( n - 1 ) = ( 1 - 1 ) ) |
6 |
5
|
oveq2d |
|- ( n = 1 -> ( x ^ ( n - 1 ) ) = ( x ^ ( 1 - 1 ) ) ) |
7 |
4 6
|
oveq12d |
|- ( n = 1 -> ( n x. ( x ^ ( n - 1 ) ) ) = ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) |
8 |
7
|
mpteq2dv |
|- ( n = 1 -> ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) = ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) ) |
9 |
3 8
|
eqeq12d |
|- ( n = 1 -> ( ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) <-> ( CC _D ( x e. CC |-> ( x ^ 1 ) ) ) = ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) ) ) |
10 |
|
oveq2 |
|- ( n = k -> ( x ^ n ) = ( x ^ k ) ) |
11 |
10
|
mpteq2dv |
|- ( n = k -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ k ) ) ) |
12 |
11
|
oveq2d |
|- ( n = k -> ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( CC _D ( x e. CC |-> ( x ^ k ) ) ) ) |
13 |
|
id |
|- ( n = k -> n = k ) |
14 |
|
oveq1 |
|- ( n = k -> ( n - 1 ) = ( k - 1 ) ) |
15 |
14
|
oveq2d |
|- ( n = k -> ( x ^ ( n - 1 ) ) = ( x ^ ( k - 1 ) ) ) |
16 |
13 15
|
oveq12d |
|- ( n = k -> ( n x. ( x ^ ( n - 1 ) ) ) = ( k x. ( x ^ ( k - 1 ) ) ) ) |
17 |
16
|
mpteq2dv |
|- ( n = k -> ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) |
18 |
12 17
|
eqeq12d |
|- ( n = k -> ( ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) <-> ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) ) |
19 |
|
oveq2 |
|- ( n = ( k + 1 ) -> ( x ^ n ) = ( x ^ ( k + 1 ) ) ) |
20 |
19
|
mpteq2dv |
|- ( n = ( k + 1 ) -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) |
21 |
20
|
oveq2d |
|- ( n = ( k + 1 ) -> ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) ) |
22 |
|
id |
|- ( n = ( k + 1 ) -> n = ( k + 1 ) ) |
23 |
|
oveq1 |
|- ( n = ( k + 1 ) -> ( n - 1 ) = ( ( k + 1 ) - 1 ) ) |
24 |
23
|
oveq2d |
|- ( n = ( k + 1 ) -> ( x ^ ( n - 1 ) ) = ( x ^ ( ( k + 1 ) - 1 ) ) ) |
25 |
22 24
|
oveq12d |
|- ( n = ( k + 1 ) -> ( n x. ( x ^ ( n - 1 ) ) ) = ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) |
26 |
25
|
mpteq2dv |
|- ( n = ( k + 1 ) -> ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) = ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) ) |
27 |
21 26
|
eqeq12d |
|- ( n = ( k + 1 ) -> ( ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) <-> ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) = ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) ) ) |
28 |
|
oveq2 |
|- ( n = N -> ( x ^ n ) = ( x ^ N ) ) |
29 |
28
|
mpteq2dv |
|- ( n = N -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ N ) ) ) |
30 |
29
|
oveq2d |
|- ( n = N -> ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( CC _D ( x e. CC |-> ( x ^ N ) ) ) ) |
31 |
|
id |
|- ( n = N -> n = N ) |
32 |
|
oveq1 |
|- ( n = N -> ( n - 1 ) = ( N - 1 ) ) |
33 |
32
|
oveq2d |
|- ( n = N -> ( x ^ ( n - 1 ) ) = ( x ^ ( N - 1 ) ) ) |
34 |
31 33
|
oveq12d |
|- ( n = N -> ( n x. ( x ^ ( n - 1 ) ) ) = ( N x. ( x ^ ( N - 1 ) ) ) ) |
35 |
34
|
mpteq2dv |
|- ( n = N -> ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) = ( x e. CC |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) |
36 |
30 35
|
eqeq12d |
|- ( n = N -> ( ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) <-> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) ) |
37 |
|
exp1 |
|- ( x e. CC -> ( x ^ 1 ) = x ) |
38 |
37
|
mpteq2ia |
|- ( x e. CC |-> ( x ^ 1 ) ) = ( x e. CC |-> x ) |
39 |
|
mptresid |
|- ( _I |` CC ) = ( x e. CC |-> x ) |
40 |
38 39
|
eqtr4i |
|- ( x e. CC |-> ( x ^ 1 ) ) = ( _I |` CC ) |
41 |
40
|
oveq2i |
|- ( CC _D ( x e. CC |-> ( x ^ 1 ) ) ) = ( CC _D ( _I |` CC ) ) |
42 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
43 |
42
|
oveq2i |
|- ( x ^ ( 1 - 1 ) ) = ( x ^ 0 ) |
44 |
|
exp0 |
|- ( x e. CC -> ( x ^ 0 ) = 1 ) |
45 |
43 44
|
syl5eq |
|- ( x e. CC -> ( x ^ ( 1 - 1 ) ) = 1 ) |
46 |
45
|
oveq2d |
|- ( x e. CC -> ( 1 x. ( x ^ ( 1 - 1 ) ) ) = ( 1 x. 1 ) ) |
47 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
48 |
46 47
|
eqtrdi |
|- ( x e. CC -> ( 1 x. ( x ^ ( 1 - 1 ) ) ) = 1 ) |
49 |
48
|
mpteq2ia |
|- ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) = ( x e. CC |-> 1 ) |
50 |
|
fconstmpt |
|- ( CC X. { 1 } ) = ( x e. CC |-> 1 ) |
51 |
49 50
|
eqtr4i |
|- ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) = ( CC X. { 1 } ) |
52 |
|
dvid |
|- ( CC _D ( _I |` CC ) ) = ( CC X. { 1 } ) |
53 |
51 52
|
eqtr4i |
|- ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) = ( CC _D ( _I |` CC ) ) |
54 |
41 53
|
eqtr4i |
|- ( CC _D ( x e. CC |-> ( x ^ 1 ) ) ) = ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) |
55 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
56 |
55
|
adantr |
|- ( ( k e. NN /\ x e. CC ) -> k e. CC ) |
57 |
|
ax-1cn |
|- 1 e. CC |
58 |
|
pncan |
|- ( ( k e. CC /\ 1 e. CC ) -> ( ( k + 1 ) - 1 ) = k ) |
59 |
56 57 58
|
sylancl |
|- ( ( k e. NN /\ x e. CC ) -> ( ( k + 1 ) - 1 ) = k ) |
60 |
59
|
oveq2d |
|- ( ( k e. NN /\ x e. CC ) -> ( x ^ ( ( k + 1 ) - 1 ) ) = ( x ^ k ) ) |
61 |
60
|
oveq2d |
|- ( ( k e. NN /\ x e. CC ) -> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) = ( ( k + 1 ) x. ( x ^ k ) ) ) |
62 |
57
|
a1i |
|- ( ( k e. NN /\ x e. CC ) -> 1 e. CC ) |
63 |
|
id |
|- ( x e. CC -> x e. CC ) |
64 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
65 |
|
expcl |
|- ( ( x e. CC /\ k e. NN0 ) -> ( x ^ k ) e. CC ) |
66 |
63 64 65
|
syl2anr |
|- ( ( k e. NN /\ x e. CC ) -> ( x ^ k ) e. CC ) |
67 |
56 62 66
|
adddird |
|- ( ( k e. NN /\ x e. CC ) -> ( ( k + 1 ) x. ( x ^ k ) ) = ( ( k x. ( x ^ k ) ) + ( 1 x. ( x ^ k ) ) ) ) |
68 |
66
|
mulid2d |
|- ( ( k e. NN /\ x e. CC ) -> ( 1 x. ( x ^ k ) ) = ( x ^ k ) ) |
69 |
68
|
oveq2d |
|- ( ( k e. NN /\ x e. CC ) -> ( ( k x. ( x ^ k ) ) + ( 1 x. ( x ^ k ) ) ) = ( ( k x. ( x ^ k ) ) + ( x ^ k ) ) ) |
70 |
61 67 69
|
3eqtrd |
|- ( ( k e. NN /\ x e. CC ) -> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) = ( ( k x. ( x ^ k ) ) + ( x ^ k ) ) ) |
71 |
70
|
mpteq2dva |
|- ( k e. NN -> ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) = ( x e. CC |-> ( ( k x. ( x ^ k ) ) + ( x ^ k ) ) ) ) |
72 |
|
cnex |
|- CC e. _V |
73 |
72
|
a1i |
|- ( k e. NN -> CC e. _V ) |
74 |
56 66
|
mulcld |
|- ( ( k e. NN /\ x e. CC ) -> ( k x. ( x ^ k ) ) e. CC ) |
75 |
|
nnm1nn0 |
|- ( k e. NN -> ( k - 1 ) e. NN0 ) |
76 |
|
expcl |
|- ( ( x e. CC /\ ( k - 1 ) e. NN0 ) -> ( x ^ ( k - 1 ) ) e. CC ) |
77 |
63 75 76
|
syl2anr |
|- ( ( k e. NN /\ x e. CC ) -> ( x ^ ( k - 1 ) ) e. CC ) |
78 |
56 77
|
mulcld |
|- ( ( k e. NN /\ x e. CC ) -> ( k x. ( x ^ ( k - 1 ) ) ) e. CC ) |
79 |
|
simpr |
|- ( ( k e. NN /\ x e. CC ) -> x e. CC ) |
80 |
|
eqidd |
|- ( k e. NN -> ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) |
81 |
39
|
a1i |
|- ( k e. NN -> ( _I |` CC ) = ( x e. CC |-> x ) ) |
82 |
73 78 79 80 81
|
offval2 |
|- ( k e. NN -> ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) = ( x e. CC |-> ( ( k x. ( x ^ ( k - 1 ) ) ) x. x ) ) ) |
83 |
56 77 79
|
mulassd |
|- ( ( k e. NN /\ x e. CC ) -> ( ( k x. ( x ^ ( k - 1 ) ) ) x. x ) = ( k x. ( ( x ^ ( k - 1 ) ) x. x ) ) ) |
84 |
|
expm1t |
|- ( ( x e. CC /\ k e. NN ) -> ( x ^ k ) = ( ( x ^ ( k - 1 ) ) x. x ) ) |
85 |
84
|
ancoms |
|- ( ( k e. NN /\ x e. CC ) -> ( x ^ k ) = ( ( x ^ ( k - 1 ) ) x. x ) ) |
86 |
85
|
oveq2d |
|- ( ( k e. NN /\ x e. CC ) -> ( k x. ( x ^ k ) ) = ( k x. ( ( x ^ ( k - 1 ) ) x. x ) ) ) |
87 |
83 86
|
eqtr4d |
|- ( ( k e. NN /\ x e. CC ) -> ( ( k x. ( x ^ ( k - 1 ) ) ) x. x ) = ( k x. ( x ^ k ) ) ) |
88 |
87
|
mpteq2dva |
|- ( k e. NN -> ( x e. CC |-> ( ( k x. ( x ^ ( k - 1 ) ) ) x. x ) ) = ( x e. CC |-> ( k x. ( x ^ k ) ) ) ) |
89 |
82 88
|
eqtrd |
|- ( k e. NN -> ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) = ( x e. CC |-> ( k x. ( x ^ k ) ) ) ) |
90 |
52 50
|
eqtri |
|- ( CC _D ( _I |` CC ) ) = ( x e. CC |-> 1 ) |
91 |
90
|
a1i |
|- ( k e. NN -> ( CC _D ( _I |` CC ) ) = ( x e. CC |-> 1 ) ) |
92 |
|
eqidd |
|- ( k e. NN -> ( x e. CC |-> ( x ^ k ) ) = ( x e. CC |-> ( x ^ k ) ) ) |
93 |
73 62 66 91 92
|
offval2 |
|- ( k e. NN -> ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( 1 x. ( x ^ k ) ) ) ) |
94 |
68
|
mpteq2dva |
|- ( k e. NN -> ( x e. CC |-> ( 1 x. ( x ^ k ) ) ) = ( x e. CC |-> ( x ^ k ) ) ) |
95 |
93 94
|
eqtrd |
|- ( k e. NN -> ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( x ^ k ) ) ) |
96 |
73 74 66 89 95
|
offval2 |
|- ( k e. NN -> ( ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) = ( x e. CC |-> ( ( k x. ( x ^ k ) ) + ( x ^ k ) ) ) ) |
97 |
71 96
|
eqtr4d |
|- ( k e. NN -> ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) = ( ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) ) |
98 |
|
oveq1 |
|- ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) -> ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) oF x. ( _I |` CC ) ) = ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) ) |
99 |
98
|
oveq1d |
|- ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) -> ( ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) = ( ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) ) |
100 |
99
|
eqcomd |
|- ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) -> ( ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) = ( ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) ) |
101 |
97 100
|
sylan9eq |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) = ( ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) ) |
102 |
|
cnelprrecn |
|- CC e. { RR , CC } |
103 |
102
|
a1i |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> CC e. { RR , CC } ) |
104 |
66
|
fmpttd |
|- ( k e. NN -> ( x e. CC |-> ( x ^ k ) ) : CC --> CC ) |
105 |
104
|
adantr |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( x e. CC |-> ( x ^ k ) ) : CC --> CC ) |
106 |
|
f1oi |
|- ( _I |` CC ) : CC -1-1-onto-> CC |
107 |
|
f1of |
|- ( ( _I |` CC ) : CC -1-1-onto-> CC -> ( _I |` CC ) : CC --> CC ) |
108 |
106 107
|
mp1i |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( _I |` CC ) : CC --> CC ) |
109 |
|
simpr |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) |
110 |
109
|
dmeqd |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> dom ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = dom ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) |
111 |
78
|
fmpttd |
|- ( k e. NN -> ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) : CC --> CC ) |
112 |
111
|
adantr |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) : CC --> CC ) |
113 |
112
|
fdmd |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> dom ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) = CC ) |
114 |
110 113
|
eqtrd |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> dom ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = CC ) |
115 |
|
1ex |
|- 1 e. _V |
116 |
115
|
fconst |
|- ( CC X. { 1 } ) : CC --> { 1 } |
117 |
52
|
feq1i |
|- ( ( CC _D ( _I |` CC ) ) : CC --> { 1 } <-> ( CC X. { 1 } ) : CC --> { 1 } ) |
118 |
116 117
|
mpbir |
|- ( CC _D ( _I |` CC ) ) : CC --> { 1 } |
119 |
118
|
fdmi |
|- dom ( CC _D ( _I |` CC ) ) = CC |
120 |
119
|
a1i |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> dom ( CC _D ( _I |` CC ) ) = CC ) |
121 |
103 105 108 114 120
|
dvmulf |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( CC _D ( ( x e. CC |-> ( x ^ k ) ) oF x. ( _I |` CC ) ) ) = ( ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) ) |
122 |
73 66 79 92 81
|
offval2 |
|- ( k e. NN -> ( ( x e. CC |-> ( x ^ k ) ) oF x. ( _I |` CC ) ) = ( x e. CC |-> ( ( x ^ k ) x. x ) ) ) |
123 |
|
expp1 |
|- ( ( x e. CC /\ k e. NN0 ) -> ( x ^ ( k + 1 ) ) = ( ( x ^ k ) x. x ) ) |
124 |
63 64 123
|
syl2anr |
|- ( ( k e. NN /\ x e. CC ) -> ( x ^ ( k + 1 ) ) = ( ( x ^ k ) x. x ) ) |
125 |
124
|
mpteq2dva |
|- ( k e. NN -> ( x e. CC |-> ( x ^ ( k + 1 ) ) ) = ( x e. CC |-> ( ( x ^ k ) x. x ) ) ) |
126 |
122 125
|
eqtr4d |
|- ( k e. NN -> ( ( x e. CC |-> ( x ^ k ) ) oF x. ( _I |` CC ) ) = ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) |
127 |
126
|
oveq2d |
|- ( k e. NN -> ( CC _D ( ( x e. CC |-> ( x ^ k ) ) oF x. ( _I |` CC ) ) ) = ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) ) |
128 |
127
|
adantr |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( CC _D ( ( x e. CC |-> ( x ^ k ) ) oF x. ( _I |` CC ) ) ) = ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) ) |
129 |
101 121 128
|
3eqtr2rd |
|- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) = ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) ) |
130 |
129
|
ex |
|- ( k e. NN -> ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) -> ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) = ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) ) ) |
131 |
9 18 27 36 54 130
|
nnind |
|- ( N e. NN -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) |