Step |
Hyp |
Ref |
Expression |
1 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
2 |
|
dvexp |
|- ( N e. NN -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) |
3 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
4 |
3
|
neneqd |
|- ( N e. NN -> -. N = 0 ) |
5 |
4
|
iffalsed |
|- ( N e. NN -> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) = ( N x. ( x ^ ( N - 1 ) ) ) ) |
6 |
5
|
mpteq2dv |
|- ( N e. NN -> ( x e. CC |-> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) = ( x e. CC |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) |
7 |
2 6
|
eqtr4d |
|- ( N e. NN -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) ) |
8 |
|
oveq2 |
|- ( N = 0 -> ( x ^ N ) = ( x ^ 0 ) ) |
9 |
|
exp0 |
|- ( x e. CC -> ( x ^ 0 ) = 1 ) |
10 |
8 9
|
sylan9eq |
|- ( ( N = 0 /\ x e. CC ) -> ( x ^ N ) = 1 ) |
11 |
10
|
mpteq2dva |
|- ( N = 0 -> ( x e. CC |-> ( x ^ N ) ) = ( x e. CC |-> 1 ) ) |
12 |
|
fconstmpt |
|- ( CC X. { 1 } ) = ( x e. CC |-> 1 ) |
13 |
11 12
|
eqtr4di |
|- ( N = 0 -> ( x e. CC |-> ( x ^ N ) ) = ( CC X. { 1 } ) ) |
14 |
13
|
oveq2d |
|- ( N = 0 -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( CC _D ( CC X. { 1 } ) ) ) |
15 |
|
ax-1cn |
|- 1 e. CC |
16 |
|
dvconst |
|- ( 1 e. CC -> ( CC _D ( CC X. { 1 } ) ) = ( CC X. { 0 } ) ) |
17 |
15 16
|
ax-mp |
|- ( CC _D ( CC X. { 1 } ) ) = ( CC X. { 0 } ) |
18 |
14 17
|
eqtrdi |
|- ( N = 0 -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( CC X. { 0 } ) ) |
19 |
|
fconstmpt |
|- ( CC X. { 0 } ) = ( x e. CC |-> 0 ) |
20 |
18 19
|
eqtrdi |
|- ( N = 0 -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> 0 ) ) |
21 |
|
iftrue |
|- ( N = 0 -> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) = 0 ) |
22 |
21
|
mpteq2dv |
|- ( N = 0 -> ( x e. CC |-> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) = ( x e. CC |-> 0 ) ) |
23 |
20 22
|
eqtr4d |
|- ( N = 0 -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) ) |
24 |
7 23
|
jaoi |
|- ( ( N e. NN \/ N = 0 ) -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) ) |
25 |
1 24
|
sylbi |
|- ( N e. NN0 -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> if ( N = 0 , 0 , ( N x. ( x ^ ( N - 1 ) ) ) ) ) ) |