Metamath Proof Explorer


Theorem dvf

Description: The derivative is a function. (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)

Ref Expression
Assertion dvf
|- ( RR _D F ) : dom ( RR _D F ) --> CC

Proof

Step Hyp Ref Expression
1 reelprrecn
 |-  RR e. { RR , CC }
2 dvfg
 |-  ( RR e. { RR , CC } -> ( RR _D F ) : dom ( RR _D F ) --> CC )
3 1 2 ax-mp
 |-  ( RR _D F ) : dom ( RR _D F ) --> CC