Metamath Proof Explorer


Theorem dvfcn

Description: The derivative is a function. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Assertion dvfcn
|- ( CC _D F ) : dom ( CC _D F ) --> CC

Proof

Step Hyp Ref Expression
1 cnelprrecn
 |-  CC e. { RR , CC }
2 dvfg
 |-  ( CC e. { RR , CC } -> ( CC _D F ) : dom ( CC _D F ) --> CC )
3 1 2 ax-mp
 |-  ( CC _D F ) : dom ( CC _D F ) --> CC