Step |
Hyp |
Ref |
Expression |
1 |
|
dvferm.a |
|- ( ph -> F : X --> RR ) |
2 |
|
dvferm.b |
|- ( ph -> X C_ RR ) |
3 |
|
dvferm.u |
|- ( ph -> U e. ( A (,) B ) ) |
4 |
|
dvferm.s |
|- ( ph -> ( A (,) B ) C_ X ) |
5 |
|
dvferm.d |
|- ( ph -> U e. dom ( RR _D F ) ) |
6 |
|
dvferm.r |
|- ( ph -> A. y e. ( A (,) B ) ( F ` y ) <_ ( F ` U ) ) |
7 |
|
ne0i |
|- ( U e. ( A (,) B ) -> ( A (,) B ) =/= (/) ) |
8 |
|
ndmioo |
|- ( -. ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = (/) ) |
9 |
8
|
necon1ai |
|- ( ( A (,) B ) =/= (/) -> ( A e. RR* /\ B e. RR* ) ) |
10 |
3 7 9
|
3syl |
|- ( ph -> ( A e. RR* /\ B e. RR* ) ) |
11 |
10
|
simpld |
|- ( ph -> A e. RR* ) |
12 |
|
ioossre |
|- ( A (,) B ) C_ RR |
13 |
12 3
|
sselid |
|- ( ph -> U e. RR ) |
14 |
13
|
rexrd |
|- ( ph -> U e. RR* ) |
15 |
|
eliooord |
|- ( U e. ( A (,) B ) -> ( A < U /\ U < B ) ) |
16 |
3 15
|
syl |
|- ( ph -> ( A < U /\ U < B ) ) |
17 |
16
|
simpld |
|- ( ph -> A < U ) |
18 |
11 14 17
|
xrltled |
|- ( ph -> A <_ U ) |
19 |
|
iooss1 |
|- ( ( A e. RR* /\ A <_ U ) -> ( U (,) B ) C_ ( A (,) B ) ) |
20 |
11 18 19
|
syl2anc |
|- ( ph -> ( U (,) B ) C_ ( A (,) B ) ) |
21 |
|
ssralv |
|- ( ( U (,) B ) C_ ( A (,) B ) -> ( A. y e. ( A (,) B ) ( F ` y ) <_ ( F ` U ) -> A. y e. ( U (,) B ) ( F ` y ) <_ ( F ` U ) ) ) |
22 |
20 6 21
|
sylc |
|- ( ph -> A. y e. ( U (,) B ) ( F ` y ) <_ ( F ` U ) ) |
23 |
1 2 3 4 5 22
|
dvferm1 |
|- ( ph -> ( ( RR _D F ) ` U ) <_ 0 ) |
24 |
10
|
simprd |
|- ( ph -> B e. RR* ) |
25 |
16
|
simprd |
|- ( ph -> U < B ) |
26 |
14 24 25
|
xrltled |
|- ( ph -> U <_ B ) |
27 |
|
iooss2 |
|- ( ( B e. RR* /\ U <_ B ) -> ( A (,) U ) C_ ( A (,) B ) ) |
28 |
24 26 27
|
syl2anc |
|- ( ph -> ( A (,) U ) C_ ( A (,) B ) ) |
29 |
|
ssralv |
|- ( ( A (,) U ) C_ ( A (,) B ) -> ( A. y e. ( A (,) B ) ( F ` y ) <_ ( F ` U ) -> A. y e. ( A (,) U ) ( F ` y ) <_ ( F ` U ) ) ) |
30 |
28 6 29
|
sylc |
|- ( ph -> A. y e. ( A (,) U ) ( F ` y ) <_ ( F ` U ) ) |
31 |
1 2 3 4 5 30
|
dvferm2 |
|- ( ph -> 0 <_ ( ( RR _D F ) ` U ) ) |
32 |
|
dvfre |
|- ( ( F : X --> RR /\ X C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
33 |
1 2 32
|
syl2anc |
|- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
34 |
33 5
|
ffvelrnd |
|- ( ph -> ( ( RR _D F ) ` U ) e. RR ) |
35 |
|
0re |
|- 0 e. RR |
36 |
|
letri3 |
|- ( ( ( ( RR _D F ) ` U ) e. RR /\ 0 e. RR ) -> ( ( ( RR _D F ) ` U ) = 0 <-> ( ( ( RR _D F ) ` U ) <_ 0 /\ 0 <_ ( ( RR _D F ) ` U ) ) ) ) |
37 |
34 35 36
|
sylancl |
|- ( ph -> ( ( ( RR _D F ) ` U ) = 0 <-> ( ( ( RR _D F ) ` U ) <_ 0 /\ 0 <_ ( ( RR _D F ) ` U ) ) ) ) |
38 |
23 31 37
|
mpbir2and |
|- ( ph -> ( ( RR _D F ) ` U ) = 0 ) |