Step |
Hyp |
Ref |
Expression |
1 |
|
dvferm.a |
|- ( ph -> F : X --> RR ) |
2 |
|
dvferm.b |
|- ( ph -> X C_ RR ) |
3 |
|
dvferm.u |
|- ( ph -> U e. ( A (,) B ) ) |
4 |
|
dvferm.s |
|- ( ph -> ( A (,) B ) C_ X ) |
5 |
|
dvferm.d |
|- ( ph -> U e. dom ( RR _D F ) ) |
6 |
|
dvferm1.r |
|- ( ph -> A. y e. ( U (,) B ) ( F ` y ) <_ ( F ` U ) ) |
7 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
8 |
7
|
oveq1d |
|- ( x = z -> ( ( F ` x ) - ( F ` U ) ) = ( ( F ` z ) - ( F ` U ) ) ) |
9 |
|
oveq1 |
|- ( x = z -> ( x - U ) = ( z - U ) ) |
10 |
8 9
|
oveq12d |
|- ( x = z -> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) = ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) ) |
11 |
|
eqid |
|- ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) = ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) |
12 |
|
ovex |
|- ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) e. _V |
13 |
10 11 12
|
fvmpt |
|- ( z e. ( X \ { U } ) -> ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) ` z ) = ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) ) |
14 |
13
|
fvoveq1d |
|- ( z e. ( X \ { U } ) -> ( abs ` ( ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) ` z ) - ( ( RR _D F ) ` U ) ) ) = ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) ) |
15 |
|
id |
|- ( y = ( ( RR _D F ) ` U ) -> y = ( ( RR _D F ) ` U ) ) |
16 |
14 15
|
breqan12rd |
|- ( ( y = ( ( RR _D F ) ` U ) /\ z e. ( X \ { U } ) ) -> ( ( abs ` ( ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) ` z ) - ( ( RR _D F ) ` U ) ) ) < y <-> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) |
17 |
16
|
imbi2d |
|- ( ( y = ( ( RR _D F ) ` U ) /\ z e. ( X \ { U } ) ) -> ( ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) ` z ) - ( ( RR _D F ) ` U ) ) ) < y ) <-> ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) ) |
18 |
17
|
ralbidva |
|- ( y = ( ( RR _D F ) ` U ) -> ( A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) ` z ) - ( ( RR _D F ) ` U ) ) ) < y ) <-> A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) ) |
19 |
18
|
rexbidv |
|- ( y = ( ( RR _D F ) ` U ) -> ( E. u e. RR+ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) ` z ) - ( ( RR _D F ) ` U ) ) ) < y ) <-> E. u e. RR+ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) ) |
20 |
|
dvf |
|- ( RR _D F ) : dom ( RR _D F ) --> CC |
21 |
|
ffun |
|- ( ( RR _D F ) : dom ( RR _D F ) --> CC -> Fun ( RR _D F ) ) |
22 |
|
funfvbrb |
|- ( Fun ( RR _D F ) -> ( U e. dom ( RR _D F ) <-> U ( RR _D F ) ( ( RR _D F ) ` U ) ) ) |
23 |
20 21 22
|
mp2b |
|- ( U e. dom ( RR _D F ) <-> U ( RR _D F ) ( ( RR _D F ) ` U ) ) |
24 |
5 23
|
sylib |
|- ( ph -> U ( RR _D F ) ( ( RR _D F ) ` U ) ) |
25 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t RR ) = ( ( TopOpen ` CCfld ) |`t RR ) |
26 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
27 |
|
ax-resscn |
|- RR C_ CC |
28 |
27
|
a1i |
|- ( ph -> RR C_ CC ) |
29 |
|
fss |
|- ( ( F : X --> RR /\ RR C_ CC ) -> F : X --> CC ) |
30 |
1 27 29
|
sylancl |
|- ( ph -> F : X --> CC ) |
31 |
25 26 11 28 30 2
|
eldv |
|- ( ph -> ( U ( RR _D F ) ( ( RR _D F ) ` U ) <-> ( U e. ( ( int ` ( ( TopOpen ` CCfld ) |`t RR ) ) ` X ) /\ ( ( RR _D F ) ` U ) e. ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) limCC U ) ) ) ) |
32 |
24 31
|
mpbid |
|- ( ph -> ( U e. ( ( int ` ( ( TopOpen ` CCfld ) |`t RR ) ) ` X ) /\ ( ( RR _D F ) ` U ) e. ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) limCC U ) ) ) |
33 |
32
|
simprd |
|- ( ph -> ( ( RR _D F ) ` U ) e. ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) limCC U ) ) |
34 |
33
|
adantr |
|- ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) -> ( ( RR _D F ) ` U ) e. ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) limCC U ) ) |
35 |
2 27
|
sstrdi |
|- ( ph -> X C_ CC ) |
36 |
4 3
|
sseldd |
|- ( ph -> U e. X ) |
37 |
30 35 36
|
dvlem |
|- ( ( ph /\ x e. ( X \ { U } ) ) -> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) e. CC ) |
38 |
37
|
fmpttd |
|- ( ph -> ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) : ( X \ { U } ) --> CC ) |
39 |
38
|
adantr |
|- ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) -> ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) : ( X \ { U } ) --> CC ) |
40 |
35
|
adantr |
|- ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) -> X C_ CC ) |
41 |
40
|
ssdifssd |
|- ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) -> ( X \ { U } ) C_ CC ) |
42 |
35 36
|
sseldd |
|- ( ph -> U e. CC ) |
43 |
42
|
adantr |
|- ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) -> U e. CC ) |
44 |
39 41 43
|
ellimc3 |
|- ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) -> ( ( ( RR _D F ) ` U ) e. ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) limCC U ) <-> ( ( ( RR _D F ) ` U ) e. CC /\ A. y e. RR+ E. u e. RR+ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) ` z ) - ( ( RR _D F ) ` U ) ) ) < y ) ) ) ) |
45 |
34 44
|
mpbid |
|- ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) -> ( ( ( RR _D F ) ` U ) e. CC /\ A. y e. RR+ E. u e. RR+ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) ` z ) - ( ( RR _D F ) ` U ) ) ) < y ) ) ) |
46 |
45
|
simprd |
|- ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) -> A. y e. RR+ E. u e. RR+ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( x e. ( X \ { U } ) |-> ( ( ( F ` x ) - ( F ` U ) ) / ( x - U ) ) ) ` z ) - ( ( RR _D F ) ` U ) ) ) < y ) ) |
47 |
|
dvfre |
|- ( ( F : X --> RR /\ X C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
48 |
1 2 47
|
syl2anc |
|- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
49 |
48 5
|
ffvelrnd |
|- ( ph -> ( ( RR _D F ) ` U ) e. RR ) |
50 |
49
|
anim1i |
|- ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) -> ( ( ( RR _D F ) ` U ) e. RR /\ 0 < ( ( RR _D F ) ` U ) ) ) |
51 |
|
elrp |
|- ( ( ( RR _D F ) ` U ) e. RR+ <-> ( ( ( RR _D F ) ` U ) e. RR /\ 0 < ( ( RR _D F ) ` U ) ) ) |
52 |
50 51
|
sylibr |
|- ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) -> ( ( RR _D F ) ` U ) e. RR+ ) |
53 |
19 46 52
|
rspcdva |
|- ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) -> E. u e. RR+ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) |
54 |
1
|
ad3antrrr |
|- ( ( ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) /\ u e. RR+ ) /\ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) -> F : X --> RR ) |
55 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) /\ u e. RR+ ) /\ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) -> X C_ RR ) |
56 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) /\ u e. RR+ ) /\ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) -> U e. ( A (,) B ) ) |
57 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) /\ u e. RR+ ) /\ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) -> ( A (,) B ) C_ X ) |
58 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) /\ u e. RR+ ) /\ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) -> U e. dom ( RR _D F ) ) |
59 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) /\ u e. RR+ ) /\ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) -> A. y e. ( U (,) B ) ( F ` y ) <_ ( F ` U ) ) |
60 |
|
simpllr |
|- ( ( ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) /\ u e. RR+ ) /\ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) -> 0 < ( ( RR _D F ) ` U ) ) |
61 |
|
simplr |
|- ( ( ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) /\ u e. RR+ ) /\ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) -> u e. RR+ ) |
62 |
|
simpr |
|- ( ( ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) /\ u e. RR+ ) /\ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) -> A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) |
63 |
|
eqid |
|- ( ( U + if ( B <_ ( U + u ) , B , ( U + u ) ) ) / 2 ) = ( ( U + if ( B <_ ( U + u ) , B , ( U + u ) ) ) / 2 ) |
64 |
54 55 56 57 58 59 60 61 62 63
|
dvferm1lem |
|- -. ( ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) /\ u e. RR+ ) /\ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) |
65 |
64
|
imnani |
|- ( ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) /\ u e. RR+ ) -> -. A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) |
66 |
65
|
nrexdv |
|- ( ( ph /\ 0 < ( ( RR _D F ) ` U ) ) -> -. E. u e. RR+ A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < u ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) |
67 |
53 66
|
pm2.65da |
|- ( ph -> -. 0 < ( ( RR _D F ) ` U ) ) |
68 |
|
0re |
|- 0 e. RR |
69 |
|
lenlt |
|- ( ( ( ( RR _D F ) ` U ) e. RR /\ 0 e. RR ) -> ( ( ( RR _D F ) ` U ) <_ 0 <-> -. 0 < ( ( RR _D F ) ` U ) ) ) |
70 |
49 68 69
|
sylancl |
|- ( ph -> ( ( ( RR _D F ) ` U ) <_ 0 <-> -. 0 < ( ( RR _D F ) ` U ) ) ) |
71 |
67 70
|
mpbird |
|- ( ph -> ( ( RR _D F ) ` U ) <_ 0 ) |