Step |
Hyp |
Ref |
Expression |
1 |
|
dvferm.a |
|- ( ph -> F : X --> RR ) |
2 |
|
dvferm.b |
|- ( ph -> X C_ RR ) |
3 |
|
dvferm.u |
|- ( ph -> U e. ( A (,) B ) ) |
4 |
|
dvferm.s |
|- ( ph -> ( A (,) B ) C_ X ) |
5 |
|
dvferm.d |
|- ( ph -> U e. dom ( RR _D F ) ) |
6 |
|
dvferm1.r |
|- ( ph -> A. y e. ( U (,) B ) ( F ` y ) <_ ( F ` U ) ) |
7 |
|
dvferm1.z |
|- ( ph -> 0 < ( ( RR _D F ) ` U ) ) |
8 |
|
dvferm1.t |
|- ( ph -> T e. RR+ ) |
9 |
|
dvferm1.l |
|- ( ph -> A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < T ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) |
10 |
|
dvferm1.x |
|- S = ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) |
11 |
|
dvfre |
|- ( ( F : X --> RR /\ X C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
12 |
1 2 11
|
syl2anc |
|- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
13 |
12 5
|
ffvelrnd |
|- ( ph -> ( ( RR _D F ) ` U ) e. RR ) |
14 |
13
|
recnd |
|- ( ph -> ( ( RR _D F ) ` U ) e. CC ) |
15 |
14
|
subidd |
|- ( ph -> ( ( ( RR _D F ) ` U ) - ( ( RR _D F ) ` U ) ) = 0 ) |
16 |
|
ioossre |
|- ( A (,) B ) C_ RR |
17 |
16 3
|
sselid |
|- ( ph -> U e. RR ) |
18 |
|
eliooord |
|- ( U e. ( A (,) B ) -> ( A < U /\ U < B ) ) |
19 |
3 18
|
syl |
|- ( ph -> ( A < U /\ U < B ) ) |
20 |
19
|
simprd |
|- ( ph -> U < B ) |
21 |
17 8
|
ltaddrpd |
|- ( ph -> U < ( U + T ) ) |
22 |
|
breq2 |
|- ( B = if ( B <_ ( U + T ) , B , ( U + T ) ) -> ( U < B <-> U < if ( B <_ ( U + T ) , B , ( U + T ) ) ) ) |
23 |
|
breq2 |
|- ( ( U + T ) = if ( B <_ ( U + T ) , B , ( U + T ) ) -> ( U < ( U + T ) <-> U < if ( B <_ ( U + T ) , B , ( U + T ) ) ) ) |
24 |
22 23
|
ifboth |
|- ( ( U < B /\ U < ( U + T ) ) -> U < if ( B <_ ( U + T ) , B , ( U + T ) ) ) |
25 |
20 21 24
|
syl2anc |
|- ( ph -> U < if ( B <_ ( U + T ) , B , ( U + T ) ) ) |
26 |
|
ne0i |
|- ( U e. ( A (,) B ) -> ( A (,) B ) =/= (/) ) |
27 |
|
ndmioo |
|- ( -. ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = (/) ) |
28 |
27
|
necon1ai |
|- ( ( A (,) B ) =/= (/) -> ( A e. RR* /\ B e. RR* ) ) |
29 |
3 26 28
|
3syl |
|- ( ph -> ( A e. RR* /\ B e. RR* ) ) |
30 |
29
|
simprd |
|- ( ph -> B e. RR* ) |
31 |
8
|
rpred |
|- ( ph -> T e. RR ) |
32 |
17 31
|
readdcld |
|- ( ph -> ( U + T ) e. RR ) |
33 |
32
|
rexrd |
|- ( ph -> ( U + T ) e. RR* ) |
34 |
30 33
|
ifcld |
|- ( ph -> if ( B <_ ( U + T ) , B , ( U + T ) ) e. RR* ) |
35 |
|
mnfxr |
|- -oo e. RR* |
36 |
35
|
a1i |
|- ( ph -> -oo e. RR* ) |
37 |
17
|
rexrd |
|- ( ph -> U e. RR* ) |
38 |
17
|
mnfltd |
|- ( ph -> -oo < U ) |
39 |
36 37 30 38 20
|
xrlttrd |
|- ( ph -> -oo < B ) |
40 |
32
|
mnfltd |
|- ( ph -> -oo < ( U + T ) ) |
41 |
|
breq2 |
|- ( B = if ( B <_ ( U + T ) , B , ( U + T ) ) -> ( -oo < B <-> -oo < if ( B <_ ( U + T ) , B , ( U + T ) ) ) ) |
42 |
|
breq2 |
|- ( ( U + T ) = if ( B <_ ( U + T ) , B , ( U + T ) ) -> ( -oo < ( U + T ) <-> -oo < if ( B <_ ( U + T ) , B , ( U + T ) ) ) ) |
43 |
41 42
|
ifboth |
|- ( ( -oo < B /\ -oo < ( U + T ) ) -> -oo < if ( B <_ ( U + T ) , B , ( U + T ) ) ) |
44 |
39 40 43
|
syl2anc |
|- ( ph -> -oo < if ( B <_ ( U + T ) , B , ( U + T ) ) ) |
45 |
|
xrmin2 |
|- ( ( B e. RR* /\ ( U + T ) e. RR* ) -> if ( B <_ ( U + T ) , B , ( U + T ) ) <_ ( U + T ) ) |
46 |
30 33 45
|
syl2anc |
|- ( ph -> if ( B <_ ( U + T ) , B , ( U + T ) ) <_ ( U + T ) ) |
47 |
|
xrre |
|- ( ( ( if ( B <_ ( U + T ) , B , ( U + T ) ) e. RR* /\ ( U + T ) e. RR ) /\ ( -oo < if ( B <_ ( U + T ) , B , ( U + T ) ) /\ if ( B <_ ( U + T ) , B , ( U + T ) ) <_ ( U + T ) ) ) -> if ( B <_ ( U + T ) , B , ( U + T ) ) e. RR ) |
48 |
34 32 44 46 47
|
syl22anc |
|- ( ph -> if ( B <_ ( U + T ) , B , ( U + T ) ) e. RR ) |
49 |
|
avglt1 |
|- ( ( U e. RR /\ if ( B <_ ( U + T ) , B , ( U + T ) ) e. RR ) -> ( U < if ( B <_ ( U + T ) , B , ( U + T ) ) <-> U < ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) ) ) |
50 |
17 48 49
|
syl2anc |
|- ( ph -> ( U < if ( B <_ ( U + T ) , B , ( U + T ) ) <-> U < ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) ) ) |
51 |
25 50
|
mpbid |
|- ( ph -> U < ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) ) |
52 |
51 10
|
breqtrrdi |
|- ( ph -> U < S ) |
53 |
17 52
|
gtned |
|- ( ph -> S =/= U ) |
54 |
17 48
|
readdcld |
|- ( ph -> ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) e. RR ) |
55 |
54
|
rehalfcld |
|- ( ph -> ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) e. RR ) |
56 |
10 55
|
eqeltrid |
|- ( ph -> S e. RR ) |
57 |
17 56 52
|
ltled |
|- ( ph -> U <_ S ) |
58 |
17 56 57
|
abssubge0d |
|- ( ph -> ( abs ` ( S - U ) ) = ( S - U ) ) |
59 |
|
avglt2 |
|- ( ( U e. RR /\ if ( B <_ ( U + T ) , B , ( U + T ) ) e. RR ) -> ( U < if ( B <_ ( U + T ) , B , ( U + T ) ) <-> ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) < if ( B <_ ( U + T ) , B , ( U + T ) ) ) ) |
60 |
17 48 59
|
syl2anc |
|- ( ph -> ( U < if ( B <_ ( U + T ) , B , ( U + T ) ) <-> ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) < if ( B <_ ( U + T ) , B , ( U + T ) ) ) ) |
61 |
25 60
|
mpbid |
|- ( ph -> ( ( U + if ( B <_ ( U + T ) , B , ( U + T ) ) ) / 2 ) < if ( B <_ ( U + T ) , B , ( U + T ) ) ) |
62 |
10 61
|
eqbrtrid |
|- ( ph -> S < if ( B <_ ( U + T ) , B , ( U + T ) ) ) |
63 |
56 48 32 62 46
|
ltletrd |
|- ( ph -> S < ( U + T ) ) |
64 |
56 17 31
|
ltsubadd2d |
|- ( ph -> ( ( S - U ) < T <-> S < ( U + T ) ) ) |
65 |
63 64
|
mpbird |
|- ( ph -> ( S - U ) < T ) |
66 |
58 65
|
eqbrtrd |
|- ( ph -> ( abs ` ( S - U ) ) < T ) |
67 |
|
neeq1 |
|- ( z = S -> ( z =/= U <-> S =/= U ) ) |
68 |
|
fvoveq1 |
|- ( z = S -> ( abs ` ( z - U ) ) = ( abs ` ( S - U ) ) ) |
69 |
68
|
breq1d |
|- ( z = S -> ( ( abs ` ( z - U ) ) < T <-> ( abs ` ( S - U ) ) < T ) ) |
70 |
67 69
|
anbi12d |
|- ( z = S -> ( ( z =/= U /\ ( abs ` ( z - U ) ) < T ) <-> ( S =/= U /\ ( abs ` ( S - U ) ) < T ) ) ) |
71 |
|
fveq2 |
|- ( z = S -> ( F ` z ) = ( F ` S ) ) |
72 |
71
|
oveq1d |
|- ( z = S -> ( ( F ` z ) - ( F ` U ) ) = ( ( F ` S ) - ( F ` U ) ) ) |
73 |
|
oveq1 |
|- ( z = S -> ( z - U ) = ( S - U ) ) |
74 |
72 73
|
oveq12d |
|- ( z = S -> ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) = ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) |
75 |
74
|
fvoveq1d |
|- ( z = S -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) = ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) ) |
76 |
75
|
breq1d |
|- ( z = S -> ( ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) <-> ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) |
77 |
70 76
|
imbi12d |
|- ( z = S -> ( ( ( z =/= U /\ ( abs ` ( z - U ) ) < T ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) <-> ( ( S =/= U /\ ( abs ` ( S - U ) ) < T ) -> ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) ) |
78 |
29
|
simpld |
|- ( ph -> A e. RR* ) |
79 |
19
|
simpld |
|- ( ph -> A < U ) |
80 |
78 37 79
|
xrltled |
|- ( ph -> A <_ U ) |
81 |
|
iooss1 |
|- ( ( A e. RR* /\ A <_ U ) -> ( U (,) B ) C_ ( A (,) B ) ) |
82 |
78 80 81
|
syl2anc |
|- ( ph -> ( U (,) B ) C_ ( A (,) B ) ) |
83 |
82 4
|
sstrd |
|- ( ph -> ( U (,) B ) C_ X ) |
84 |
56
|
rexrd |
|- ( ph -> S e. RR* ) |
85 |
|
xrmin1 |
|- ( ( B e. RR* /\ ( U + T ) e. RR* ) -> if ( B <_ ( U + T ) , B , ( U + T ) ) <_ B ) |
86 |
30 33 85
|
syl2anc |
|- ( ph -> if ( B <_ ( U + T ) , B , ( U + T ) ) <_ B ) |
87 |
84 34 30 62 86
|
xrltletrd |
|- ( ph -> S < B ) |
88 |
|
elioo2 |
|- ( ( U e. RR* /\ B e. RR* ) -> ( S e. ( U (,) B ) <-> ( S e. RR /\ U < S /\ S < B ) ) ) |
89 |
37 30 88
|
syl2anc |
|- ( ph -> ( S e. ( U (,) B ) <-> ( S e. RR /\ U < S /\ S < B ) ) ) |
90 |
56 52 87 89
|
mpbir3and |
|- ( ph -> S e. ( U (,) B ) ) |
91 |
83 90
|
sseldd |
|- ( ph -> S e. X ) |
92 |
|
eldifsn |
|- ( S e. ( X \ { U } ) <-> ( S e. X /\ S =/= U ) ) |
93 |
91 53 92
|
sylanbrc |
|- ( ph -> S e. ( X \ { U } ) ) |
94 |
77 9 93
|
rspcdva |
|- ( ph -> ( ( S =/= U /\ ( abs ` ( S - U ) ) < T ) -> ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) ) |
95 |
53 66 94
|
mp2and |
|- ( ph -> ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) ) |
96 |
1 91
|
ffvelrnd |
|- ( ph -> ( F ` S ) e. RR ) |
97 |
4 3
|
sseldd |
|- ( ph -> U e. X ) |
98 |
1 97
|
ffvelrnd |
|- ( ph -> ( F ` U ) e. RR ) |
99 |
96 98
|
resubcld |
|- ( ph -> ( ( F ` S ) - ( F ` U ) ) e. RR ) |
100 |
56 17
|
resubcld |
|- ( ph -> ( S - U ) e. RR ) |
101 |
17 56
|
posdifd |
|- ( ph -> ( U < S <-> 0 < ( S - U ) ) ) |
102 |
52 101
|
mpbid |
|- ( ph -> 0 < ( S - U ) ) |
103 |
100 102
|
elrpd |
|- ( ph -> ( S - U ) e. RR+ ) |
104 |
99 103
|
rerpdivcld |
|- ( ph -> ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) e. RR ) |
105 |
104 13 13
|
absdifltd |
|- ( ph -> ( ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < ( ( RR _D F ) ` U ) <-> ( ( ( ( RR _D F ) ` U ) - ( ( RR _D F ) ` U ) ) < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) /\ ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) < ( ( ( RR _D F ) ` U ) + ( ( RR _D F ) ` U ) ) ) ) ) |
106 |
95 105
|
mpbid |
|- ( ph -> ( ( ( ( RR _D F ) ` U ) - ( ( RR _D F ) ` U ) ) < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) /\ ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) < ( ( ( RR _D F ) ` U ) + ( ( RR _D F ) ` U ) ) ) ) |
107 |
106
|
simpld |
|- ( ph -> ( ( ( RR _D F ) ` U ) - ( ( RR _D F ) ` U ) ) < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) |
108 |
15 107
|
eqbrtrrd |
|- ( ph -> 0 < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) |
109 |
|
gt0div |
|- ( ( ( ( F ` S ) - ( F ` U ) ) e. RR /\ ( S - U ) e. RR /\ 0 < ( S - U ) ) -> ( 0 < ( ( F ` S ) - ( F ` U ) ) <-> 0 < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) ) |
110 |
99 100 102 109
|
syl3anc |
|- ( ph -> ( 0 < ( ( F ` S ) - ( F ` U ) ) <-> 0 < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) ) |
111 |
108 110
|
mpbird |
|- ( ph -> 0 < ( ( F ` S ) - ( F ` U ) ) ) |
112 |
98 96
|
posdifd |
|- ( ph -> ( ( F ` U ) < ( F ` S ) <-> 0 < ( ( F ` S ) - ( F ` U ) ) ) ) |
113 |
111 112
|
mpbird |
|- ( ph -> ( F ` U ) < ( F ` S ) ) |
114 |
|
fveq2 |
|- ( y = S -> ( F ` y ) = ( F ` S ) ) |
115 |
114
|
breq1d |
|- ( y = S -> ( ( F ` y ) <_ ( F ` U ) <-> ( F ` S ) <_ ( F ` U ) ) ) |
116 |
115 6 90
|
rspcdva |
|- ( ph -> ( F ` S ) <_ ( F ` U ) ) |
117 |
96 98 116
|
lensymd |
|- ( ph -> -. ( F ` U ) < ( F ` S ) ) |
118 |
113 117
|
pm2.65i |
|- -. ph |