Step |
Hyp |
Ref |
Expression |
1 |
|
dvferm.a |
|- ( ph -> F : X --> RR ) |
2 |
|
dvferm.b |
|- ( ph -> X C_ RR ) |
3 |
|
dvferm.u |
|- ( ph -> U e. ( A (,) B ) ) |
4 |
|
dvferm.s |
|- ( ph -> ( A (,) B ) C_ X ) |
5 |
|
dvferm.d |
|- ( ph -> U e. dom ( RR _D F ) ) |
6 |
|
dvferm2.r |
|- ( ph -> A. y e. ( A (,) U ) ( F ` y ) <_ ( F ` U ) ) |
7 |
|
dvferm2.z |
|- ( ph -> ( ( RR _D F ) ` U ) < 0 ) |
8 |
|
dvferm2.t |
|- ( ph -> T e. RR+ ) |
9 |
|
dvferm2.l |
|- ( ph -> A. z e. ( X \ { U } ) ( ( z =/= U /\ ( abs ` ( z - U ) ) < T ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) |
10 |
|
dvferm2.x |
|- S = ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) + U ) / 2 ) |
11 |
|
mnfxr |
|- -oo e. RR* |
12 |
11
|
a1i |
|- ( ph -> -oo e. RR* ) |
13 |
|
ioossre |
|- ( A (,) B ) C_ RR |
14 |
13 3
|
sselid |
|- ( ph -> U e. RR ) |
15 |
8
|
rpred |
|- ( ph -> T e. RR ) |
16 |
14 15
|
resubcld |
|- ( ph -> ( U - T ) e. RR ) |
17 |
16
|
rexrd |
|- ( ph -> ( U - T ) e. RR* ) |
18 |
|
ne0i |
|- ( U e. ( A (,) B ) -> ( A (,) B ) =/= (/) ) |
19 |
|
ndmioo |
|- ( -. ( A e. RR* /\ B e. RR* ) -> ( A (,) B ) = (/) ) |
20 |
19
|
necon1ai |
|- ( ( A (,) B ) =/= (/) -> ( A e. RR* /\ B e. RR* ) ) |
21 |
3 18 20
|
3syl |
|- ( ph -> ( A e. RR* /\ B e. RR* ) ) |
22 |
21
|
simpld |
|- ( ph -> A e. RR* ) |
23 |
17 22
|
ifcld |
|- ( ph -> if ( A <_ ( U - T ) , ( U - T ) , A ) e. RR* ) |
24 |
14
|
rexrd |
|- ( ph -> U e. RR* ) |
25 |
16
|
mnfltd |
|- ( ph -> -oo < ( U - T ) ) |
26 |
|
xrmax2 |
|- ( ( A e. RR* /\ ( U - T ) e. RR* ) -> ( U - T ) <_ if ( A <_ ( U - T ) , ( U - T ) , A ) ) |
27 |
22 17 26
|
syl2anc |
|- ( ph -> ( U - T ) <_ if ( A <_ ( U - T ) , ( U - T ) , A ) ) |
28 |
12 17 23 25 27
|
xrltletrd |
|- ( ph -> -oo < if ( A <_ ( U - T ) , ( U - T ) , A ) ) |
29 |
14 8
|
ltsubrpd |
|- ( ph -> ( U - T ) < U ) |
30 |
|
eliooord |
|- ( U e. ( A (,) B ) -> ( A < U /\ U < B ) ) |
31 |
3 30
|
syl |
|- ( ph -> ( A < U /\ U < B ) ) |
32 |
31
|
simpld |
|- ( ph -> A < U ) |
33 |
|
breq1 |
|- ( ( U - T ) = if ( A <_ ( U - T ) , ( U - T ) , A ) -> ( ( U - T ) < U <-> if ( A <_ ( U - T ) , ( U - T ) , A ) < U ) ) |
34 |
|
breq1 |
|- ( A = if ( A <_ ( U - T ) , ( U - T ) , A ) -> ( A < U <-> if ( A <_ ( U - T ) , ( U - T ) , A ) < U ) ) |
35 |
33 34
|
ifboth |
|- ( ( ( U - T ) < U /\ A < U ) -> if ( A <_ ( U - T ) , ( U - T ) , A ) < U ) |
36 |
29 32 35
|
syl2anc |
|- ( ph -> if ( A <_ ( U - T ) , ( U - T ) , A ) < U ) |
37 |
|
xrre2 |
|- ( ( ( -oo e. RR* /\ if ( A <_ ( U - T ) , ( U - T ) , A ) e. RR* /\ U e. RR* ) /\ ( -oo < if ( A <_ ( U - T ) , ( U - T ) , A ) /\ if ( A <_ ( U - T ) , ( U - T ) , A ) < U ) ) -> if ( A <_ ( U - T ) , ( U - T ) , A ) e. RR ) |
38 |
12 23 24 28 36 37
|
syl32anc |
|- ( ph -> if ( A <_ ( U - T ) , ( U - T ) , A ) e. RR ) |
39 |
38 14
|
readdcld |
|- ( ph -> ( if ( A <_ ( U - T ) , ( U - T ) , A ) + U ) e. RR ) |
40 |
39
|
rehalfcld |
|- ( ph -> ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) + U ) / 2 ) e. RR ) |
41 |
10 40
|
eqeltrid |
|- ( ph -> S e. RR ) |
42 |
|
avglt2 |
|- ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) e. RR /\ U e. RR ) -> ( if ( A <_ ( U - T ) , ( U - T ) , A ) < U <-> ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) + U ) / 2 ) < U ) ) |
43 |
38 14 42
|
syl2anc |
|- ( ph -> ( if ( A <_ ( U - T ) , ( U - T ) , A ) < U <-> ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) + U ) / 2 ) < U ) ) |
44 |
36 43
|
mpbid |
|- ( ph -> ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) + U ) / 2 ) < U ) |
45 |
10 44
|
eqbrtrid |
|- ( ph -> S < U ) |
46 |
41 45
|
ltned |
|- ( ph -> S =/= U ) |
47 |
41 14 45
|
ltled |
|- ( ph -> S <_ U ) |
48 |
41 14 47
|
abssuble0d |
|- ( ph -> ( abs ` ( S - U ) ) = ( U - S ) ) |
49 |
|
avglt1 |
|- ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) e. RR /\ U e. RR ) -> ( if ( A <_ ( U - T ) , ( U - T ) , A ) < U <-> if ( A <_ ( U - T ) , ( U - T ) , A ) < ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) + U ) / 2 ) ) ) |
50 |
38 14 49
|
syl2anc |
|- ( ph -> ( if ( A <_ ( U - T ) , ( U - T ) , A ) < U <-> if ( A <_ ( U - T ) , ( U - T ) , A ) < ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) + U ) / 2 ) ) ) |
51 |
36 50
|
mpbid |
|- ( ph -> if ( A <_ ( U - T ) , ( U - T ) , A ) < ( ( if ( A <_ ( U - T ) , ( U - T ) , A ) + U ) / 2 ) ) |
52 |
51 10
|
breqtrrdi |
|- ( ph -> if ( A <_ ( U - T ) , ( U - T ) , A ) < S ) |
53 |
16 38 41 27 52
|
lelttrd |
|- ( ph -> ( U - T ) < S ) |
54 |
14 15 41 53
|
ltsub23d |
|- ( ph -> ( U - S ) < T ) |
55 |
48 54
|
eqbrtrd |
|- ( ph -> ( abs ` ( S - U ) ) < T ) |
56 |
|
neeq1 |
|- ( z = S -> ( z =/= U <-> S =/= U ) ) |
57 |
|
fvoveq1 |
|- ( z = S -> ( abs ` ( z - U ) ) = ( abs ` ( S - U ) ) ) |
58 |
57
|
breq1d |
|- ( z = S -> ( ( abs ` ( z - U ) ) < T <-> ( abs ` ( S - U ) ) < T ) ) |
59 |
56 58
|
anbi12d |
|- ( z = S -> ( ( z =/= U /\ ( abs ` ( z - U ) ) < T ) <-> ( S =/= U /\ ( abs ` ( S - U ) ) < T ) ) ) |
60 |
|
fveq2 |
|- ( z = S -> ( F ` z ) = ( F ` S ) ) |
61 |
60
|
oveq1d |
|- ( z = S -> ( ( F ` z ) - ( F ` U ) ) = ( ( F ` S ) - ( F ` U ) ) ) |
62 |
|
oveq1 |
|- ( z = S -> ( z - U ) = ( S - U ) ) |
63 |
61 62
|
oveq12d |
|- ( z = S -> ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) = ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) |
64 |
63
|
fvoveq1d |
|- ( z = S -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) = ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) ) |
65 |
64
|
breq1d |
|- ( z = S -> ( ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) <-> ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) |
66 |
59 65
|
imbi12d |
|- ( z = S -> ( ( ( z =/= U /\ ( abs ` ( z - U ) ) < T ) -> ( abs ` ( ( ( ( F ` z ) - ( F ` U ) ) / ( z - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) <-> ( ( S =/= U /\ ( abs ` ( S - U ) ) < T ) -> ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) ) |
67 |
21
|
simprd |
|- ( ph -> B e. RR* ) |
68 |
31
|
simprd |
|- ( ph -> U < B ) |
69 |
24 67 68
|
xrltled |
|- ( ph -> U <_ B ) |
70 |
|
iooss2 |
|- ( ( B e. RR* /\ U <_ B ) -> ( A (,) U ) C_ ( A (,) B ) ) |
71 |
67 69 70
|
syl2anc |
|- ( ph -> ( A (,) U ) C_ ( A (,) B ) ) |
72 |
71 4
|
sstrd |
|- ( ph -> ( A (,) U ) C_ X ) |
73 |
41
|
rexrd |
|- ( ph -> S e. RR* ) |
74 |
|
xrmax1 |
|- ( ( A e. RR* /\ ( U - T ) e. RR* ) -> A <_ if ( A <_ ( U - T ) , ( U - T ) , A ) ) |
75 |
22 17 74
|
syl2anc |
|- ( ph -> A <_ if ( A <_ ( U - T ) , ( U - T ) , A ) ) |
76 |
22 23 73 75 52
|
xrlelttrd |
|- ( ph -> A < S ) |
77 |
|
elioo2 |
|- ( ( A e. RR* /\ U e. RR* ) -> ( S e. ( A (,) U ) <-> ( S e. RR /\ A < S /\ S < U ) ) ) |
78 |
22 24 77
|
syl2anc |
|- ( ph -> ( S e. ( A (,) U ) <-> ( S e. RR /\ A < S /\ S < U ) ) ) |
79 |
41 76 45 78
|
mpbir3and |
|- ( ph -> S e. ( A (,) U ) ) |
80 |
72 79
|
sseldd |
|- ( ph -> S e. X ) |
81 |
|
eldifsn |
|- ( S e. ( X \ { U } ) <-> ( S e. X /\ S =/= U ) ) |
82 |
80 46 81
|
sylanbrc |
|- ( ph -> S e. ( X \ { U } ) ) |
83 |
66 9 82
|
rspcdva |
|- ( ph -> ( ( S =/= U /\ ( abs ` ( S - U ) ) < T ) -> ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) ) |
84 |
46 55 83
|
mp2and |
|- ( ph -> ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) ) |
85 |
1 80
|
ffvelrnd |
|- ( ph -> ( F ` S ) e. RR ) |
86 |
4 3
|
sseldd |
|- ( ph -> U e. X ) |
87 |
1 86
|
ffvelrnd |
|- ( ph -> ( F ` U ) e. RR ) |
88 |
85 87
|
resubcld |
|- ( ph -> ( ( F ` S ) - ( F ` U ) ) e. RR ) |
89 |
41 14
|
resubcld |
|- ( ph -> ( S - U ) e. RR ) |
90 |
41
|
recnd |
|- ( ph -> S e. CC ) |
91 |
14
|
recnd |
|- ( ph -> U e. CC ) |
92 |
90 91 46
|
subne0d |
|- ( ph -> ( S - U ) =/= 0 ) |
93 |
88 89 92
|
redivcld |
|- ( ph -> ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) e. RR ) |
94 |
|
dvfre |
|- ( ( F : X --> RR /\ X C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
95 |
1 2 94
|
syl2anc |
|- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
96 |
95 5
|
ffvelrnd |
|- ( ph -> ( ( RR _D F ) ` U ) e. RR ) |
97 |
96
|
renegcld |
|- ( ph -> -u ( ( RR _D F ) ` U ) e. RR ) |
98 |
93 96 97
|
absdifltd |
|- ( ph -> ( ( abs ` ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) - ( ( RR _D F ) ` U ) ) ) < -u ( ( RR _D F ) ` U ) <-> ( ( ( ( RR _D F ) ` U ) - -u ( ( RR _D F ) ` U ) ) < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) /\ ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) < ( ( ( RR _D F ) ` U ) + -u ( ( RR _D F ) ` U ) ) ) ) ) |
99 |
84 98
|
mpbid |
|- ( ph -> ( ( ( ( RR _D F ) ` U ) - -u ( ( RR _D F ) ` U ) ) < ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) /\ ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) < ( ( ( RR _D F ) ` U ) + -u ( ( RR _D F ) ` U ) ) ) ) |
100 |
99
|
simprd |
|- ( ph -> ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) < ( ( ( RR _D F ) ` U ) + -u ( ( RR _D F ) ` U ) ) ) |
101 |
96
|
recnd |
|- ( ph -> ( ( RR _D F ) ` U ) e. CC ) |
102 |
101
|
negidd |
|- ( ph -> ( ( ( RR _D F ) ` U ) + -u ( ( RR _D F ) ` U ) ) = 0 ) |
103 |
100 102
|
breqtrd |
|- ( ph -> ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) < 0 ) |
104 |
93
|
lt0neg1d |
|- ( ph -> ( ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) < 0 <-> 0 < -u ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) ) |
105 |
103 104
|
mpbid |
|- ( ph -> 0 < -u ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) ) |
106 |
88
|
recnd |
|- ( ph -> ( ( F ` S ) - ( F ` U ) ) e. CC ) |
107 |
89
|
recnd |
|- ( ph -> ( S - U ) e. CC ) |
108 |
106 107 92
|
divneg2d |
|- ( ph -> -u ( ( ( F ` S ) - ( F ` U ) ) / ( S - U ) ) = ( ( ( F ` S ) - ( F ` U ) ) / -u ( S - U ) ) ) |
109 |
105 108
|
breqtrd |
|- ( ph -> 0 < ( ( ( F ` S ) - ( F ` U ) ) / -u ( S - U ) ) ) |
110 |
89
|
renegcld |
|- ( ph -> -u ( S - U ) e. RR ) |
111 |
41 14
|
posdifd |
|- ( ph -> ( S < U <-> 0 < ( U - S ) ) ) |
112 |
45 111
|
mpbid |
|- ( ph -> 0 < ( U - S ) ) |
113 |
90 91
|
negsubdi2d |
|- ( ph -> -u ( S - U ) = ( U - S ) ) |
114 |
112 113
|
breqtrrd |
|- ( ph -> 0 < -u ( S - U ) ) |
115 |
|
gt0div |
|- ( ( ( ( F ` S ) - ( F ` U ) ) e. RR /\ -u ( S - U ) e. RR /\ 0 < -u ( S - U ) ) -> ( 0 < ( ( F ` S ) - ( F ` U ) ) <-> 0 < ( ( ( F ` S ) - ( F ` U ) ) / -u ( S - U ) ) ) ) |
116 |
88 110 114 115
|
syl3anc |
|- ( ph -> ( 0 < ( ( F ` S ) - ( F ` U ) ) <-> 0 < ( ( ( F ` S ) - ( F ` U ) ) / -u ( S - U ) ) ) ) |
117 |
109 116
|
mpbird |
|- ( ph -> 0 < ( ( F ` S ) - ( F ` U ) ) ) |
118 |
87 85
|
posdifd |
|- ( ph -> ( ( F ` U ) < ( F ` S ) <-> 0 < ( ( F ` S ) - ( F ` U ) ) ) ) |
119 |
117 118
|
mpbird |
|- ( ph -> ( F ` U ) < ( F ` S ) ) |
120 |
|
fveq2 |
|- ( y = S -> ( F ` y ) = ( F ` S ) ) |
121 |
120
|
breq1d |
|- ( y = S -> ( ( F ` y ) <_ ( F ` U ) <-> ( F ` S ) <_ ( F ` U ) ) ) |
122 |
121 6 79
|
rspcdva |
|- ( ph -> ( F ` S ) <_ ( F ` U ) ) |
123 |
85 87 122
|
lensymd |
|- ( ph -> -. ( F ` U ) < ( F ` S ) ) |
124 |
119 123
|
pm2.65i |
|- -. ph |