Description: Explicitly write out the functionality condition on derivative for S = RR and CC . (Contributed by Mario Carneiro, 9-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | dvfg | |- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
2 | 1 | recnperf | |- ( S e. { RR , CC } -> ( ( TopOpen ` CCfld ) |`t S ) e. Perf ) |
3 | 1 | perfdvf | |- ( ( ( TopOpen ` CCfld ) |`t S ) e. Perf -> ( S _D F ) : dom ( S _D F ) --> CC ) |
4 | 2 3 | syl | |- ( S e. { RR , CC } -> ( S _D F ) : dom ( S _D F ) --> CC ) |