| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvf |
|- ( RR _D F ) : dom ( RR _D F ) --> CC |
| 2 |
|
ffn |
|- ( ( RR _D F ) : dom ( RR _D F ) --> CC -> ( RR _D F ) Fn dom ( RR _D F ) ) |
| 3 |
1 2
|
mp1i |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( RR _D F ) Fn dom ( RR _D F ) ) |
| 4 |
1
|
ffvelcdmi |
|- ( x e. dom ( RR _D F ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 5 |
4
|
adantl |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ x e. dom ( RR _D F ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 6 |
|
simpr |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ x e. dom ( RR _D F ) ) -> x e. dom ( RR _D F ) ) |
| 7 |
|
fvco3 |
|- ( ( ( RR _D F ) : dom ( RR _D F ) --> CC /\ x e. dom ( RR _D F ) ) -> ( ( * o. ( RR _D F ) ) ` x ) = ( * ` ( ( RR _D F ) ` x ) ) ) |
| 8 |
1 6 7
|
sylancr |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ x e. dom ( RR _D F ) ) -> ( ( * o. ( RR _D F ) ) ` x ) = ( * ` ( ( RR _D F ) ` x ) ) ) |
| 9 |
|
ax-resscn |
|- RR C_ CC |
| 10 |
|
fss |
|- ( ( F : A --> RR /\ RR C_ CC ) -> F : A --> CC ) |
| 11 |
9 10
|
mpan2 |
|- ( F : A --> RR -> F : A --> CC ) |
| 12 |
|
dvcj |
|- ( ( F : A --> CC /\ A C_ RR ) -> ( RR _D ( * o. F ) ) = ( * o. ( RR _D F ) ) ) |
| 13 |
11 12
|
sylan |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( RR _D ( * o. F ) ) = ( * o. ( RR _D F ) ) ) |
| 14 |
|
ffvelcdm |
|- ( ( F : A --> RR /\ y e. A ) -> ( F ` y ) e. RR ) |
| 15 |
14
|
adantlr |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ y e. A ) -> ( F ` y ) e. RR ) |
| 16 |
15
|
cjred |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ y e. A ) -> ( * ` ( F ` y ) ) = ( F ` y ) ) |
| 17 |
16
|
mpteq2dva |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( y e. A |-> ( * ` ( F ` y ) ) ) = ( y e. A |-> ( F ` y ) ) ) |
| 18 |
15
|
recnd |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ y e. A ) -> ( F ` y ) e. CC ) |
| 19 |
|
simpl |
|- ( ( F : A --> RR /\ A C_ RR ) -> F : A --> RR ) |
| 20 |
19
|
feqmptd |
|- ( ( F : A --> RR /\ A C_ RR ) -> F = ( y e. A |-> ( F ` y ) ) ) |
| 21 |
|
cjf |
|- * : CC --> CC |
| 22 |
21
|
a1i |
|- ( ( F : A --> RR /\ A C_ RR ) -> * : CC --> CC ) |
| 23 |
22
|
feqmptd |
|- ( ( F : A --> RR /\ A C_ RR ) -> * = ( z e. CC |-> ( * ` z ) ) ) |
| 24 |
|
fveq2 |
|- ( z = ( F ` y ) -> ( * ` z ) = ( * ` ( F ` y ) ) ) |
| 25 |
18 20 23 24
|
fmptco |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( * o. F ) = ( y e. A |-> ( * ` ( F ` y ) ) ) ) |
| 26 |
17 25 20
|
3eqtr4d |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( * o. F ) = F ) |
| 27 |
26
|
oveq2d |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( RR _D ( * o. F ) ) = ( RR _D F ) ) |
| 28 |
13 27
|
eqtr3d |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( * o. ( RR _D F ) ) = ( RR _D F ) ) |
| 29 |
28
|
fveq1d |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( ( * o. ( RR _D F ) ) ` x ) = ( ( RR _D F ) ` x ) ) |
| 30 |
29
|
adantr |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ x e. dom ( RR _D F ) ) -> ( ( * o. ( RR _D F ) ) ` x ) = ( ( RR _D F ) ` x ) ) |
| 31 |
8 30
|
eqtr3d |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ x e. dom ( RR _D F ) ) -> ( * ` ( ( RR _D F ) ` x ) ) = ( ( RR _D F ) ` x ) ) |
| 32 |
5 31
|
cjrebd |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ x e. dom ( RR _D F ) ) -> ( ( RR _D F ) ` x ) e. RR ) |
| 33 |
32
|
ralrimiva |
|- ( ( F : A --> RR /\ A C_ RR ) -> A. x e. dom ( RR _D F ) ( ( RR _D F ) ` x ) e. RR ) |
| 34 |
|
ffnfv |
|- ( ( RR _D F ) : dom ( RR _D F ) --> RR <-> ( ( RR _D F ) Fn dom ( RR _D F ) /\ A. x e. dom ( RR _D F ) ( ( RR _D F ) ` x ) e. RR ) ) |
| 35 |
3 33 34
|
sylanbrc |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |