Step |
Hyp |
Ref |
Expression |
1 |
|
dvf |
|- ( RR _D F ) : dom ( RR _D F ) --> CC |
2 |
|
ffn |
|- ( ( RR _D F ) : dom ( RR _D F ) --> CC -> ( RR _D F ) Fn dom ( RR _D F ) ) |
3 |
1 2
|
mp1i |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( RR _D F ) Fn dom ( RR _D F ) ) |
4 |
1
|
ffvelrni |
|- ( x e. dom ( RR _D F ) -> ( ( RR _D F ) ` x ) e. CC ) |
5 |
4
|
adantl |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ x e. dom ( RR _D F ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
6 |
|
simpr |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ x e. dom ( RR _D F ) ) -> x e. dom ( RR _D F ) ) |
7 |
|
fvco3 |
|- ( ( ( RR _D F ) : dom ( RR _D F ) --> CC /\ x e. dom ( RR _D F ) ) -> ( ( * o. ( RR _D F ) ) ` x ) = ( * ` ( ( RR _D F ) ` x ) ) ) |
8 |
1 6 7
|
sylancr |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ x e. dom ( RR _D F ) ) -> ( ( * o. ( RR _D F ) ) ` x ) = ( * ` ( ( RR _D F ) ` x ) ) ) |
9 |
|
ax-resscn |
|- RR C_ CC |
10 |
|
fss |
|- ( ( F : A --> RR /\ RR C_ CC ) -> F : A --> CC ) |
11 |
9 10
|
mpan2 |
|- ( F : A --> RR -> F : A --> CC ) |
12 |
|
dvcj |
|- ( ( F : A --> CC /\ A C_ RR ) -> ( RR _D ( * o. F ) ) = ( * o. ( RR _D F ) ) ) |
13 |
11 12
|
sylan |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( RR _D ( * o. F ) ) = ( * o. ( RR _D F ) ) ) |
14 |
|
ffvelrn |
|- ( ( F : A --> RR /\ y e. A ) -> ( F ` y ) e. RR ) |
15 |
14
|
adantlr |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ y e. A ) -> ( F ` y ) e. RR ) |
16 |
15
|
cjred |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ y e. A ) -> ( * ` ( F ` y ) ) = ( F ` y ) ) |
17 |
16
|
mpteq2dva |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( y e. A |-> ( * ` ( F ` y ) ) ) = ( y e. A |-> ( F ` y ) ) ) |
18 |
15
|
recnd |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ y e. A ) -> ( F ` y ) e. CC ) |
19 |
|
simpl |
|- ( ( F : A --> RR /\ A C_ RR ) -> F : A --> RR ) |
20 |
19
|
feqmptd |
|- ( ( F : A --> RR /\ A C_ RR ) -> F = ( y e. A |-> ( F ` y ) ) ) |
21 |
|
cjf |
|- * : CC --> CC |
22 |
21
|
a1i |
|- ( ( F : A --> RR /\ A C_ RR ) -> * : CC --> CC ) |
23 |
22
|
feqmptd |
|- ( ( F : A --> RR /\ A C_ RR ) -> * = ( z e. CC |-> ( * ` z ) ) ) |
24 |
|
fveq2 |
|- ( z = ( F ` y ) -> ( * ` z ) = ( * ` ( F ` y ) ) ) |
25 |
18 20 23 24
|
fmptco |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( * o. F ) = ( y e. A |-> ( * ` ( F ` y ) ) ) ) |
26 |
17 25 20
|
3eqtr4d |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( * o. F ) = F ) |
27 |
26
|
oveq2d |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( RR _D ( * o. F ) ) = ( RR _D F ) ) |
28 |
13 27
|
eqtr3d |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( * o. ( RR _D F ) ) = ( RR _D F ) ) |
29 |
28
|
fveq1d |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( ( * o. ( RR _D F ) ) ` x ) = ( ( RR _D F ) ` x ) ) |
30 |
29
|
adantr |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ x e. dom ( RR _D F ) ) -> ( ( * o. ( RR _D F ) ) ` x ) = ( ( RR _D F ) ` x ) ) |
31 |
8 30
|
eqtr3d |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ x e. dom ( RR _D F ) ) -> ( * ` ( ( RR _D F ) ` x ) ) = ( ( RR _D F ) ` x ) ) |
32 |
5 31
|
cjrebd |
|- ( ( ( F : A --> RR /\ A C_ RR ) /\ x e. dom ( RR _D F ) ) -> ( ( RR _D F ) ` x ) e. RR ) |
33 |
32
|
ralrimiva |
|- ( ( F : A --> RR /\ A C_ RR ) -> A. x e. dom ( RR _D F ) ( ( RR _D F ) ` x ) e. RR ) |
34 |
|
ffnfv |
|- ( ( RR _D F ) : dom ( RR _D F ) --> RR <-> ( ( RR _D F ) Fn dom ( RR _D F ) /\ A. x e. dom ( RR _D F ) ( ( RR _D F ) ` x ) e. RR ) ) |
35 |
3 33 34
|
sylanbrc |
|- ( ( F : A --> RR /\ A C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |