Step |
Hyp |
Ref |
Expression |
1 |
|
dvfsum2.s |
|- S = ( T (,) +oo ) |
2 |
|
dvfsum2.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
dvfsum2.m |
|- ( ph -> M e. ZZ ) |
4 |
|
dvfsum2.d |
|- ( ph -> D e. RR ) |
5 |
|
dvfsum2.u |
|- ( ph -> U e. RR* ) |
6 |
|
dvfsum2.md |
|- ( ph -> M <_ ( D + 1 ) ) |
7 |
|
dvfsum2.t |
|- ( ph -> T e. RR ) |
8 |
|
dvfsum2.a |
|- ( ( ph /\ x e. S ) -> A e. RR ) |
9 |
|
dvfsum2.b1 |
|- ( ( ph /\ x e. S ) -> B e. V ) |
10 |
|
dvfsum2.b2 |
|- ( ( ph /\ x e. Z ) -> B e. RR ) |
11 |
|
dvfsum2.b3 |
|- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
12 |
|
dvfsum2.c |
|- ( x = k -> B = C ) |
13 |
|
dvfsum2.l |
|- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> B <_ C ) |
14 |
|
dvfsum2.g |
|- G = ( x e. S |-> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) ) |
15 |
|
dvfsum2.0 |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> 0 <_ B ) |
16 |
|
dvfsum2.1 |
|- ( ph -> X e. S ) |
17 |
|
dvfsum2.2 |
|- ( ph -> Y e. S ) |
18 |
|
dvfsum2.3 |
|- ( ph -> D <_ X ) |
19 |
|
dvfsum2.4 |
|- ( ph -> X <_ Y ) |
20 |
|
dvfsum2.5 |
|- ( ph -> Y <_ U ) |
21 |
|
dvfsum2.e |
|- ( x = Y -> B = E ) |
22 |
|
fzfid |
|- ( ph -> ( M ... ( |_ ` Y ) ) e. Fin ) |
23 |
10
|
ralrimiva |
|- ( ph -> A. x e. Z B e. RR ) |
24 |
|
elfzuz |
|- ( k e. ( M ... ( |_ ` Y ) ) -> k e. ( ZZ>= ` M ) ) |
25 |
24 2
|
eleqtrrdi |
|- ( k e. ( M ... ( |_ ` Y ) ) -> k e. Z ) |
26 |
12
|
eleq1d |
|- ( x = k -> ( B e. RR <-> C e. RR ) ) |
27 |
26
|
rspccva |
|- ( ( A. x e. Z B e. RR /\ k e. Z ) -> C e. RR ) |
28 |
23 25 27
|
syl2an |
|- ( ( ph /\ k e. ( M ... ( |_ ` Y ) ) ) -> C e. RR ) |
29 |
22 28
|
fsumrecl |
|- ( ph -> sum_ k e. ( M ... ( |_ ` Y ) ) C e. RR ) |
30 |
8
|
ralrimiva |
|- ( ph -> A. x e. S A e. RR ) |
31 |
|
nfcsb1v |
|- F/_ x [_ Y / x ]_ A |
32 |
31
|
nfel1 |
|- F/ x [_ Y / x ]_ A e. RR |
33 |
|
csbeq1a |
|- ( x = Y -> A = [_ Y / x ]_ A ) |
34 |
33
|
eleq1d |
|- ( x = Y -> ( A e. RR <-> [_ Y / x ]_ A e. RR ) ) |
35 |
32 34
|
rspc |
|- ( Y e. S -> ( A. x e. S A e. RR -> [_ Y / x ]_ A e. RR ) ) |
36 |
17 30 35
|
sylc |
|- ( ph -> [_ Y / x ]_ A e. RR ) |
37 |
29 36
|
resubcld |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) e. RR ) |
38 |
|
nfcv |
|- F/_ x Y |
39 |
|
nfcv |
|- F/_ x sum_ k e. ( M ... ( |_ ` Y ) ) C |
40 |
|
nfcv |
|- F/_ x - |
41 |
39 40 31
|
nfov |
|- F/_ x ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) |
42 |
|
fveq2 |
|- ( x = Y -> ( |_ ` x ) = ( |_ ` Y ) ) |
43 |
42
|
oveq2d |
|- ( x = Y -> ( M ... ( |_ ` x ) ) = ( M ... ( |_ ` Y ) ) ) |
44 |
43
|
sumeq1d |
|- ( x = Y -> sum_ k e. ( M ... ( |_ ` x ) ) C = sum_ k e. ( M ... ( |_ ` Y ) ) C ) |
45 |
44 33
|
oveq12d |
|- ( x = Y -> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) = ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) |
46 |
38 41 45 14
|
fvmptf |
|- ( ( Y e. S /\ ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) e. RR ) -> ( G ` Y ) = ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) |
47 |
17 37 46
|
syl2anc |
|- ( ph -> ( G ` Y ) = ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) |
48 |
|
fzfid |
|- ( ph -> ( M ... ( |_ ` X ) ) e. Fin ) |
49 |
|
elfzuz |
|- ( k e. ( M ... ( |_ ` X ) ) -> k e. ( ZZ>= ` M ) ) |
50 |
49 2
|
eleqtrrdi |
|- ( k e. ( M ... ( |_ ` X ) ) -> k e. Z ) |
51 |
23 50 27
|
syl2an |
|- ( ( ph /\ k e. ( M ... ( |_ ` X ) ) ) -> C e. RR ) |
52 |
48 51
|
fsumrecl |
|- ( ph -> sum_ k e. ( M ... ( |_ ` X ) ) C e. RR ) |
53 |
|
nfcsb1v |
|- F/_ x [_ X / x ]_ A |
54 |
53
|
nfel1 |
|- F/ x [_ X / x ]_ A e. RR |
55 |
|
csbeq1a |
|- ( x = X -> A = [_ X / x ]_ A ) |
56 |
55
|
eleq1d |
|- ( x = X -> ( A e. RR <-> [_ X / x ]_ A e. RR ) ) |
57 |
54 56
|
rspc |
|- ( X e. S -> ( A. x e. S A e. RR -> [_ X / x ]_ A e. RR ) ) |
58 |
16 30 57
|
sylc |
|- ( ph -> [_ X / x ]_ A e. RR ) |
59 |
52 58
|
resubcld |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) e. RR ) |
60 |
|
nfcv |
|- F/_ x X |
61 |
|
nfcv |
|- F/_ x sum_ k e. ( M ... ( |_ ` X ) ) C |
62 |
61 40 53
|
nfov |
|- F/_ x ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) |
63 |
|
fveq2 |
|- ( x = X -> ( |_ ` x ) = ( |_ ` X ) ) |
64 |
63
|
oveq2d |
|- ( x = X -> ( M ... ( |_ ` x ) ) = ( M ... ( |_ ` X ) ) ) |
65 |
64
|
sumeq1d |
|- ( x = X -> sum_ k e. ( M ... ( |_ ` x ) ) C = sum_ k e. ( M ... ( |_ ` X ) ) C ) |
66 |
65 55
|
oveq12d |
|- ( x = X -> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) = ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) |
67 |
60 62 66 14
|
fvmptf |
|- ( ( X e. S /\ ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) e. RR ) -> ( G ` X ) = ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) |
68 |
16 59 67
|
syl2anc |
|- ( ph -> ( G ` X ) = ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) |
69 |
47 68
|
oveq12d |
|- ( ph -> ( ( G ` Y ) - ( G ` X ) ) = ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
70 |
69
|
fveq2d |
|- ( ph -> ( abs ` ( ( G ` Y ) - ( G ` X ) ) ) = ( abs ` ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) ) |
71 |
37
|
recnd |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) e. CC ) |
72 |
59
|
recnd |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) e. CC ) |
73 |
71 72
|
abssubd |
|- ( ph -> ( abs ` ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) = ( abs ` ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) ) |
74 |
70 73
|
eqtrd |
|- ( ph -> ( abs ` ( ( G ` Y ) - ( G ` X ) ) ) = ( abs ` ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) ) |
75 |
|
ioossre |
|- ( T (,) +oo ) C_ RR |
76 |
1 75
|
eqsstri |
|- S C_ RR |
77 |
76
|
a1i |
|- ( ph -> S C_ RR ) |
78 |
77 8 9 11
|
dvmptrecl |
|- ( ( ph /\ x e. S ) -> B e. RR ) |
79 |
78
|
ralrimiva |
|- ( ph -> A. x e. S B e. RR ) |
80 |
21
|
eleq1d |
|- ( x = Y -> ( B e. RR <-> E e. RR ) ) |
81 |
80
|
rspcv |
|- ( Y e. S -> ( A. x e. S B e. RR -> E e. RR ) ) |
82 |
17 79 81
|
sylc |
|- ( ph -> E e. RR ) |
83 |
37 82
|
resubcld |
|- ( ph -> ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - E ) e. RR ) |
84 |
76 16
|
sselid |
|- ( ph -> X e. RR ) |
85 |
|
reflcl |
|- ( X e. RR -> ( |_ ` X ) e. RR ) |
86 |
84 85
|
syl |
|- ( ph -> ( |_ ` X ) e. RR ) |
87 |
84 86
|
resubcld |
|- ( ph -> ( X - ( |_ ` X ) ) e. RR ) |
88 |
|
nfv |
|- F/ m B e. RR |
89 |
|
nfcsb1v |
|- F/_ x [_ m / x ]_ B |
90 |
89
|
nfel1 |
|- F/ x [_ m / x ]_ B e. RR |
91 |
|
csbeq1a |
|- ( x = m -> B = [_ m / x ]_ B ) |
92 |
91
|
eleq1d |
|- ( x = m -> ( B e. RR <-> [_ m / x ]_ B e. RR ) ) |
93 |
88 90 92
|
cbvralw |
|- ( A. x e. S B e. RR <-> A. m e. S [_ m / x ]_ B e. RR ) |
94 |
79 93
|
sylib |
|- ( ph -> A. m e. S [_ m / x ]_ B e. RR ) |
95 |
|
csbeq1 |
|- ( m = X -> [_ m / x ]_ B = [_ X / x ]_ B ) |
96 |
95
|
eleq1d |
|- ( m = X -> ( [_ m / x ]_ B e. RR <-> [_ X / x ]_ B e. RR ) ) |
97 |
96
|
rspcv |
|- ( X e. S -> ( A. m e. S [_ m / x ]_ B e. RR -> [_ X / x ]_ B e. RR ) ) |
98 |
16 94 97
|
sylc |
|- ( ph -> [_ X / x ]_ B e. RR ) |
99 |
87 98
|
remulcld |
|- ( ph -> ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) e. RR ) |
100 |
99 59
|
readdcld |
|- ( ph -> ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) e. RR ) |
101 |
100 98
|
resubcld |
|- ( ph -> ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) e. RR ) |
102 |
76 17
|
sselid |
|- ( ph -> Y e. RR ) |
103 |
|
reflcl |
|- ( Y e. RR -> ( |_ ` Y ) e. RR ) |
104 |
102 103
|
syl |
|- ( ph -> ( |_ ` Y ) e. RR ) |
105 |
102 104
|
resubcld |
|- ( ph -> ( Y - ( |_ ` Y ) ) e. RR ) |
106 |
105 82
|
remulcld |
|- ( ph -> ( ( Y - ( |_ ` Y ) ) x. E ) e. RR ) |
107 |
106 37
|
readdcld |
|- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) e. RR ) |
108 |
107 82
|
resubcld |
|- ( ph -> ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) e. RR ) |
109 |
|
fracge0 |
|- ( Y e. RR -> 0 <_ ( Y - ( |_ ` Y ) ) ) |
110 |
102 109
|
syl |
|- ( ph -> 0 <_ ( Y - ( |_ ` Y ) ) ) |
111 |
15
|
expr |
|- ( ( ph /\ x e. S ) -> ( D <_ x -> 0 <_ B ) ) |
112 |
111
|
ralrimiva |
|- ( ph -> A. x e. S ( D <_ x -> 0 <_ B ) ) |
113 |
4 84 102 18 19
|
letrd |
|- ( ph -> D <_ Y ) |
114 |
|
breq2 |
|- ( x = Y -> ( D <_ x <-> D <_ Y ) ) |
115 |
21
|
breq2d |
|- ( x = Y -> ( 0 <_ B <-> 0 <_ E ) ) |
116 |
114 115
|
imbi12d |
|- ( x = Y -> ( ( D <_ x -> 0 <_ B ) <-> ( D <_ Y -> 0 <_ E ) ) ) |
117 |
116
|
rspcv |
|- ( Y e. S -> ( A. x e. S ( D <_ x -> 0 <_ B ) -> ( D <_ Y -> 0 <_ E ) ) ) |
118 |
17 112 113 117
|
syl3c |
|- ( ph -> 0 <_ E ) |
119 |
105 82 110 118
|
mulge0d |
|- ( ph -> 0 <_ ( ( Y - ( |_ ` Y ) ) x. E ) ) |
120 |
37 106
|
addge02d |
|- ( ph -> ( 0 <_ ( ( Y - ( |_ ` Y ) ) x. E ) <-> ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) <_ ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) ) |
121 |
119 120
|
mpbid |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) <_ ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
122 |
37 107 82 121
|
lesub1dd |
|- ( ph -> ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - E ) <_ ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) ) |
123 |
8
|
renegcld |
|- ( ( ph /\ x e. S ) -> -u A e. RR ) |
124 |
78
|
renegcld |
|- ( ( ph /\ x e. S ) -> -u B e. RR ) |
125 |
10
|
renegcld |
|- ( ( ph /\ x e. Z ) -> -u B e. RR ) |
126 |
|
reelprrecn |
|- RR e. { RR , CC } |
127 |
126
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
128 |
8
|
recnd |
|- ( ( ph /\ x e. S ) -> A e. CC ) |
129 |
127 128 9 11
|
dvmptneg |
|- ( ph -> ( RR _D ( x e. S |-> -u A ) ) = ( x e. S |-> -u B ) ) |
130 |
12
|
negeqd |
|- ( x = k -> -u B = -u C ) |
131 |
78
|
adantrr |
|- ( ( ph /\ ( x e. S /\ k e. S ) ) -> B e. RR ) |
132 |
131
|
3adant3 |
|- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> B e. RR ) |
133 |
|
simp2r |
|- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> k e. S ) |
134 |
79
|
3ad2ant1 |
|- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> A. x e. S B e. RR ) |
135 |
26
|
rspcv |
|- ( k e. S -> ( A. x e. S B e. RR -> C e. RR ) ) |
136 |
133 134 135
|
sylc |
|- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> C e. RR ) |
137 |
132 136
|
lenegd |
|- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> ( B <_ C <-> -u C <_ -u B ) ) |
138 |
13 137
|
mpbid |
|- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ U ) ) -> -u C <_ -u B ) |
139 |
|
eqid |
|- ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) = ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) |
140 |
1 2 3 4 6 7 123 124 125 129 130 5 138 139 16 17 18 19 20
|
dvfsumlem3 |
|- ( ph -> ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) <_ ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) /\ ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) - [_ X / x ]_ -u B ) <_ ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) - [_ Y / x ]_ -u B ) ) ) |
141 |
140
|
simprd |
|- ( ph -> ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) - [_ X / x ]_ -u B ) <_ ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) - [_ Y / x ]_ -u B ) ) |
142 |
87
|
recnd |
|- ( ph -> ( X - ( |_ ` X ) ) e. CC ) |
143 |
98
|
recnd |
|- ( ph -> [_ X / x ]_ B e. CC ) |
144 |
142 143
|
mulneg2d |
|- ( ph -> ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) = -u ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) ) |
145 |
52
|
recnd |
|- ( ph -> sum_ k e. ( M ... ( |_ ` X ) ) C e. CC ) |
146 |
58
|
recnd |
|- ( ph -> [_ X / x ]_ A e. CC ) |
147 |
145 146
|
neg2subd |
|- ( ph -> ( -u sum_ k e. ( M ... ( |_ ` X ) ) C - -u [_ X / x ]_ A ) = ( [_ X / x ]_ A - sum_ k e. ( M ... ( |_ ` X ) ) C ) ) |
148 |
51
|
recnd |
|- ( ( ph /\ k e. ( M ... ( |_ ` X ) ) ) -> C e. CC ) |
149 |
48 148
|
fsumneg |
|- ( ph -> sum_ k e. ( M ... ( |_ ` X ) ) -u C = -u sum_ k e. ( M ... ( |_ ` X ) ) C ) |
150 |
149
|
oveq1d |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) = ( -u sum_ k e. ( M ... ( |_ ` X ) ) C - -u [_ X / x ]_ A ) ) |
151 |
145 146
|
negsubdi2d |
|- ( ph -> -u ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) = ( [_ X / x ]_ A - sum_ k e. ( M ... ( |_ ` X ) ) C ) ) |
152 |
147 150 151
|
3eqtr4d |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) = -u ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) |
153 |
144 152
|
oveq12d |
|- ( ph -> ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) = ( -u ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + -u ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
154 |
99
|
recnd |
|- ( ph -> ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) e. CC ) |
155 |
154 72
|
negdid |
|- ( ph -> -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) = ( -u ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + -u ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
156 |
153 155
|
eqtr4d |
|- ( ph -> ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) = -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
157 |
100
|
renegcld |
|- ( ph -> -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) e. RR ) |
158 |
156 157
|
eqeltrd |
|- ( ph -> ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) e. RR ) |
159 |
|
nfcv |
|- F/_ x ( X - ( |_ ` X ) ) |
160 |
|
nfcv |
|- F/_ x x. |
161 |
|
nfcsb1v |
|- F/_ x [_ X / x ]_ B |
162 |
161
|
nfneg |
|- F/_ x -u [_ X / x ]_ B |
163 |
159 160 162
|
nfov |
|- F/_ x ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) |
164 |
|
nfcv |
|- F/_ x + |
165 |
|
nfcv |
|- F/_ x sum_ k e. ( M ... ( |_ ` X ) ) -u C |
166 |
53
|
nfneg |
|- F/_ x -u [_ X / x ]_ A |
167 |
165 40 166
|
nfov |
|- F/_ x ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) |
168 |
163 164 167
|
nfov |
|- F/_ x ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) |
169 |
|
id |
|- ( x = X -> x = X ) |
170 |
169 63
|
oveq12d |
|- ( x = X -> ( x - ( |_ ` x ) ) = ( X - ( |_ ` X ) ) ) |
171 |
|
csbeq1a |
|- ( x = X -> B = [_ X / x ]_ B ) |
172 |
171
|
negeqd |
|- ( x = X -> -u B = -u [_ X / x ]_ B ) |
173 |
170 172
|
oveq12d |
|- ( x = X -> ( ( x - ( |_ ` x ) ) x. -u B ) = ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) ) |
174 |
64
|
sumeq1d |
|- ( x = X -> sum_ k e. ( M ... ( |_ ` x ) ) -u C = sum_ k e. ( M ... ( |_ ` X ) ) -u C ) |
175 |
55
|
negeqd |
|- ( x = X -> -u A = -u [_ X / x ]_ A ) |
176 |
174 175
|
oveq12d |
|- ( x = X -> ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) = ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) |
177 |
173 176
|
oveq12d |
|- ( x = X -> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) = ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) ) |
178 |
60 168 177 139
|
fvmptf |
|- ( ( X e. S /\ ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) e. RR ) -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) = ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) ) |
179 |
16 158 178
|
syl2anc |
|- ( ph -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) = ( ( ( X - ( |_ ` X ) ) x. -u [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) -u C - -u [_ X / x ]_ A ) ) ) |
180 |
179 156
|
eqtrd |
|- ( ph -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) = -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
181 |
|
csbnegg |
|- ( X e. S -> [_ X / x ]_ -u B = -u [_ X / x ]_ B ) |
182 |
16 181
|
syl |
|- ( ph -> [_ X / x ]_ -u B = -u [_ X / x ]_ B ) |
183 |
180 182
|
oveq12d |
|- ( ph -> ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) - [_ X / x ]_ -u B ) = ( -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - -u [_ X / x ]_ B ) ) |
184 |
105
|
recnd |
|- ( ph -> ( Y - ( |_ ` Y ) ) e. CC ) |
185 |
82
|
recnd |
|- ( ph -> E e. CC ) |
186 |
184 185
|
mulneg2d |
|- ( ph -> ( ( Y - ( |_ ` Y ) ) x. -u E ) = -u ( ( Y - ( |_ ` Y ) ) x. E ) ) |
187 |
29
|
recnd |
|- ( ph -> sum_ k e. ( M ... ( |_ ` Y ) ) C e. CC ) |
188 |
36
|
recnd |
|- ( ph -> [_ Y / x ]_ A e. CC ) |
189 |
187 188
|
neg2subd |
|- ( ph -> ( -u sum_ k e. ( M ... ( |_ ` Y ) ) C - -u [_ Y / x ]_ A ) = ( [_ Y / x ]_ A - sum_ k e. ( M ... ( |_ ` Y ) ) C ) ) |
190 |
28
|
recnd |
|- ( ( ph /\ k e. ( M ... ( |_ ` Y ) ) ) -> C e. CC ) |
191 |
22 190
|
fsumneg |
|- ( ph -> sum_ k e. ( M ... ( |_ ` Y ) ) -u C = -u sum_ k e. ( M ... ( |_ ` Y ) ) C ) |
192 |
191
|
oveq1d |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) = ( -u sum_ k e. ( M ... ( |_ ` Y ) ) C - -u [_ Y / x ]_ A ) ) |
193 |
187 188
|
negsubdi2d |
|- ( ph -> -u ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) = ( [_ Y / x ]_ A - sum_ k e. ( M ... ( |_ ` Y ) ) C ) ) |
194 |
189 192 193
|
3eqtr4d |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) = -u ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) |
195 |
186 194
|
oveq12d |
|- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) = ( -u ( ( Y - ( |_ ` Y ) ) x. E ) + -u ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
196 |
106
|
recnd |
|- ( ph -> ( ( Y - ( |_ ` Y ) ) x. E ) e. CC ) |
197 |
196 71
|
negdid |
|- ( ph -> -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) = ( -u ( ( Y - ( |_ ` Y ) ) x. E ) + -u ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
198 |
195 197
|
eqtr4d |
|- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) = -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
199 |
107
|
renegcld |
|- ( ph -> -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) e. RR ) |
200 |
198 199
|
eqeltrd |
|- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) e. RR ) |
201 |
|
nfcv |
|- F/_ x ( ( Y - ( |_ ` Y ) ) x. -u E ) |
202 |
|
nfcv |
|- F/_ x sum_ k e. ( M ... ( |_ ` Y ) ) -u C |
203 |
31
|
nfneg |
|- F/_ x -u [_ Y / x ]_ A |
204 |
202 40 203
|
nfov |
|- F/_ x ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) |
205 |
201 164 204
|
nfov |
|- F/_ x ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) |
206 |
|
id |
|- ( x = Y -> x = Y ) |
207 |
206 42
|
oveq12d |
|- ( x = Y -> ( x - ( |_ ` x ) ) = ( Y - ( |_ ` Y ) ) ) |
208 |
21
|
negeqd |
|- ( x = Y -> -u B = -u E ) |
209 |
207 208
|
oveq12d |
|- ( x = Y -> ( ( x - ( |_ ` x ) ) x. -u B ) = ( ( Y - ( |_ ` Y ) ) x. -u E ) ) |
210 |
43
|
sumeq1d |
|- ( x = Y -> sum_ k e. ( M ... ( |_ ` x ) ) -u C = sum_ k e. ( M ... ( |_ ` Y ) ) -u C ) |
211 |
33
|
negeqd |
|- ( x = Y -> -u A = -u [_ Y / x ]_ A ) |
212 |
210 211
|
oveq12d |
|- ( x = Y -> ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) = ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) |
213 |
209 212
|
oveq12d |
|- ( x = Y -> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) = ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) ) |
214 |
38 205 213 139
|
fvmptf |
|- ( ( Y e. S /\ ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) e. RR ) -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) = ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) ) |
215 |
17 200 214
|
syl2anc |
|- ( ph -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) = ( ( ( Y - ( |_ ` Y ) ) x. -u E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) -u C - -u [_ Y / x ]_ A ) ) ) |
216 |
215 198
|
eqtrd |
|- ( ph -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) = -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
217 |
208
|
adantl |
|- ( ( ph /\ x = Y ) -> -u B = -u E ) |
218 |
17 217
|
csbied |
|- ( ph -> [_ Y / x ]_ -u B = -u E ) |
219 |
216 218
|
oveq12d |
|- ( ph -> ( ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) - [_ Y / x ]_ -u B ) = ( -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - -u E ) ) |
220 |
141 183 219
|
3brtr3d |
|- ( ph -> ( -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - -u [_ X / x ]_ B ) <_ ( -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - -u E ) ) |
221 |
100
|
recnd |
|- ( ph -> ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) e. CC ) |
222 |
221 143
|
neg2subd |
|- ( ph -> ( -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - -u [_ X / x ]_ B ) = ( [_ X / x ]_ B - ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) ) |
223 |
107
|
recnd |
|- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) e. CC ) |
224 |
223 185
|
neg2subd |
|- ( ph -> ( -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - -u E ) = ( E - ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) ) |
225 |
220 222 224
|
3brtr3d |
|- ( ph -> ( [_ X / x ]_ B - ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) <_ ( E - ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) ) |
226 |
221 143
|
negsubdi2d |
|- ( ph -> -u ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) = ( [_ X / x ]_ B - ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) ) |
227 |
223 185
|
negsubdi2d |
|- ( ph -> -u ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) = ( E - ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) ) |
228 |
225 226 227
|
3brtr4d |
|- ( ph -> -u ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) <_ -u ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) ) |
229 |
108 101
|
lenegd |
|- ( ph -> ( ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) <_ ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) <-> -u ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) <_ -u ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) ) ) |
230 |
228 229
|
mpbird |
|- ( ph -> ( ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) - E ) <_ ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) ) |
231 |
83 108 101 122 230
|
letrd |
|- ( ph -> ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - E ) <_ ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) ) |
232 |
|
1red |
|- ( ph -> 1 e. RR ) |
233 |
|
nfv |
|- F/ x D <_ X |
234 |
|
nfcv |
|- F/_ x 0 |
235 |
|
nfcv |
|- F/_ x <_ |
236 |
234 235 161
|
nfbr |
|- F/ x 0 <_ [_ X / x ]_ B |
237 |
233 236
|
nfim |
|- F/ x ( D <_ X -> 0 <_ [_ X / x ]_ B ) |
238 |
|
breq2 |
|- ( x = X -> ( D <_ x <-> D <_ X ) ) |
239 |
171
|
breq2d |
|- ( x = X -> ( 0 <_ B <-> 0 <_ [_ X / x ]_ B ) ) |
240 |
238 239
|
imbi12d |
|- ( x = X -> ( ( D <_ x -> 0 <_ B ) <-> ( D <_ X -> 0 <_ [_ X / x ]_ B ) ) ) |
241 |
237 240
|
rspc |
|- ( X e. S -> ( A. x e. S ( D <_ x -> 0 <_ B ) -> ( D <_ X -> 0 <_ [_ X / x ]_ B ) ) ) |
242 |
16 112 18 241
|
syl3c |
|- ( ph -> 0 <_ [_ X / x ]_ B ) |
243 |
|
fracle1 |
|- ( X e. RR -> ( X - ( |_ ` X ) ) <_ 1 ) |
244 |
84 243
|
syl |
|- ( ph -> ( X - ( |_ ` X ) ) <_ 1 ) |
245 |
87 232 98 242 244
|
lemul1ad |
|- ( ph -> ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) <_ ( 1 x. [_ X / x ]_ B ) ) |
246 |
143
|
mulid2d |
|- ( ph -> ( 1 x. [_ X / x ]_ B ) = [_ X / x ]_ B ) |
247 |
245 246
|
breqtrd |
|- ( ph -> ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) <_ [_ X / x ]_ B ) |
248 |
99 98 59 247
|
leadd1dd |
|- ( ph -> ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) <_ ( [_ X / x ]_ B + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
249 |
100 98 59
|
lesubadd2d |
|- ( ph -> ( ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) <_ ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) <-> ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) <_ ( [_ X / x ]_ B + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) ) |
250 |
248 249
|
mpbird |
|- ( ph -> ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) - [_ X / x ]_ B ) <_ ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) |
251 |
83 101 59 231 250
|
letrd |
|- ( ph -> ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - E ) <_ ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) |
252 |
37 82
|
readdcld |
|- ( ph -> ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) + E ) e. RR ) |
253 |
|
fracge0 |
|- ( X e. RR -> 0 <_ ( X - ( |_ ` X ) ) ) |
254 |
84 253
|
syl |
|- ( ph -> 0 <_ ( X - ( |_ ` X ) ) ) |
255 |
87 98 254 242
|
mulge0d |
|- ( ph -> 0 <_ ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) ) |
256 |
59 99
|
addge02d |
|- ( ph -> ( 0 <_ ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) <-> ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) <_ ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) ) |
257 |
255 256
|
mpbid |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) <_ ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
258 |
140
|
simpld |
|- ( ph -> ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` Y ) <_ ( ( x e. S |-> ( ( ( x - ( |_ ` x ) ) x. -u B ) + ( sum_ k e. ( M ... ( |_ ` x ) ) -u C - -u A ) ) ) ` X ) ) |
259 |
258 216 180
|
3brtr3d |
|- ( ph -> -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) <_ -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) |
260 |
100 107
|
lenegd |
|- ( ph -> ( ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) <_ ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) <-> -u ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) <_ -u ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) ) ) |
261 |
259 260
|
mpbird |
|- ( ph -> ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) <_ ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
262 |
|
fracle1 |
|- ( Y e. RR -> ( Y - ( |_ ` Y ) ) <_ 1 ) |
263 |
102 262
|
syl |
|- ( ph -> ( Y - ( |_ ` Y ) ) <_ 1 ) |
264 |
105 232 82 118 263
|
lemul1ad |
|- ( ph -> ( ( Y - ( |_ ` Y ) ) x. E ) <_ ( 1 x. E ) ) |
265 |
185
|
mulid2d |
|- ( ph -> ( 1 x. E ) = E ) |
266 |
264 265
|
breqtrd |
|- ( ph -> ( ( Y - ( |_ ` Y ) ) x. E ) <_ E ) |
267 |
106 82 37 266
|
leadd1dd |
|- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) <_ ( E + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) |
268 |
185 71
|
addcomd |
|- ( ph -> ( E + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) = ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) + E ) ) |
269 |
267 268
|
breqtrd |
|- ( ph -> ( ( ( Y - ( |_ ` Y ) ) x. E ) + ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) <_ ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) + E ) ) |
270 |
100 107 252 261 269
|
letrd |
|- ( ph -> ( ( ( X - ( |_ ` X ) ) x. [_ X / x ]_ B ) + ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) ) <_ ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) + E ) ) |
271 |
59 100 252 257 270
|
letrd |
|- ( ph -> ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) <_ ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) + E ) ) |
272 |
59 37 82
|
absdifled |
|- ( ph -> ( ( abs ` ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) <_ E <-> ( ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) - E ) <_ ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) /\ ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) <_ ( ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) + E ) ) ) ) |
273 |
251 271 272
|
mpbir2and |
|- ( ph -> ( abs ` ( ( sum_ k e. ( M ... ( |_ ` X ) ) C - [_ X / x ]_ A ) - ( sum_ k e. ( M ... ( |_ ` Y ) ) C - [_ Y / x ]_ A ) ) ) <_ E ) |
274 |
74 273
|
eqbrtrd |
|- ( ph -> ( abs ` ( ( G ` Y ) - ( G ` X ) ) ) <_ E ) |