| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvfsumabs.m |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 2 |
|
dvfsumabs.a |
|- ( ph -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> CC ) ) |
| 3 |
|
dvfsumabs.v |
|- ( ( ph /\ x e. ( M (,) N ) ) -> B e. V ) |
| 4 |
|
dvfsumabs.b |
|- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) |
| 5 |
|
dvfsumabs.c |
|- ( x = M -> A = C ) |
| 6 |
|
dvfsumabs.d |
|- ( x = N -> A = D ) |
| 7 |
|
dvfsumabs.x |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> X e. CC ) |
| 8 |
|
dvfsumabs.y |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> Y e. RR ) |
| 9 |
|
dvfsumabs.l |
|- ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> ( abs ` ( X - B ) ) <_ Y ) |
| 10 |
|
fzofi |
|- ( M ..^ N ) e. Fin |
| 11 |
10
|
a1i |
|- ( ph -> ( M ..^ N ) e. Fin ) |
| 12 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 13 |
1 12
|
syl |
|- ( ph -> M e. ZZ ) |
| 14 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
| 15 |
1 14
|
syl |
|- ( ph -> N e. ZZ ) |
| 16 |
|
fzval2 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M ... N ) = ( ( M [,] N ) i^i ZZ ) ) |
| 17 |
13 15 16
|
syl2anc |
|- ( ph -> ( M ... N ) = ( ( M [,] N ) i^i ZZ ) ) |
| 18 |
|
inss1 |
|- ( ( M [,] N ) i^i ZZ ) C_ ( M [,] N ) |
| 19 |
17 18
|
eqsstrdi |
|- ( ph -> ( M ... N ) C_ ( M [,] N ) ) |
| 20 |
19
|
sselda |
|- ( ( ph /\ y e. ( M ... N ) ) -> y e. ( M [,] N ) ) |
| 21 |
|
cncff |
|- ( ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> CC ) -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> CC ) |
| 22 |
2 21
|
syl |
|- ( ph -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> CC ) |
| 23 |
|
eqid |
|- ( x e. ( M [,] N ) |-> A ) = ( x e. ( M [,] N ) |-> A ) |
| 24 |
23
|
fmpt |
|- ( A. x e. ( M [,] N ) A e. CC <-> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> CC ) |
| 25 |
22 24
|
sylibr |
|- ( ph -> A. x e. ( M [,] N ) A e. CC ) |
| 26 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ A |
| 27 |
26
|
nfel1 |
|- F/ x [_ y / x ]_ A e. CC |
| 28 |
|
csbeq1a |
|- ( x = y -> A = [_ y / x ]_ A ) |
| 29 |
28
|
eleq1d |
|- ( x = y -> ( A e. CC <-> [_ y / x ]_ A e. CC ) ) |
| 30 |
27 29
|
rspc |
|- ( y e. ( M [,] N ) -> ( A. x e. ( M [,] N ) A e. CC -> [_ y / x ]_ A e. CC ) ) |
| 31 |
25 30
|
mpan9 |
|- ( ( ph /\ y e. ( M [,] N ) ) -> [_ y / x ]_ A e. CC ) |
| 32 |
20 31
|
syldan |
|- ( ( ph /\ y e. ( M ... N ) ) -> [_ y / x ]_ A e. CC ) |
| 33 |
32
|
ralrimiva |
|- ( ph -> A. y e. ( M ... N ) [_ y / x ]_ A e. CC ) |
| 34 |
|
fzofzp1 |
|- ( k e. ( M ..^ N ) -> ( k + 1 ) e. ( M ... N ) ) |
| 35 |
|
csbeq1 |
|- ( y = ( k + 1 ) -> [_ y / x ]_ A = [_ ( k + 1 ) / x ]_ A ) |
| 36 |
35
|
eleq1d |
|- ( y = ( k + 1 ) -> ( [_ y / x ]_ A e. CC <-> [_ ( k + 1 ) / x ]_ A e. CC ) ) |
| 37 |
36
|
rspccva |
|- ( ( A. y e. ( M ... N ) [_ y / x ]_ A e. CC /\ ( k + 1 ) e. ( M ... N ) ) -> [_ ( k + 1 ) / x ]_ A e. CC ) |
| 38 |
33 34 37
|
syl2an |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> [_ ( k + 1 ) / x ]_ A e. CC ) |
| 39 |
|
elfzofz |
|- ( k e. ( M ..^ N ) -> k e. ( M ... N ) ) |
| 40 |
|
csbeq1 |
|- ( y = k -> [_ y / x ]_ A = [_ k / x ]_ A ) |
| 41 |
40
|
eleq1d |
|- ( y = k -> ( [_ y / x ]_ A e. CC <-> [_ k / x ]_ A e. CC ) ) |
| 42 |
41
|
rspccva |
|- ( ( A. y e. ( M ... N ) [_ y / x ]_ A e. CC /\ k e. ( M ... N ) ) -> [_ k / x ]_ A e. CC ) |
| 43 |
33 39 42
|
syl2an |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> [_ k / x ]_ A e. CC ) |
| 44 |
38 43
|
subcld |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) e. CC ) |
| 45 |
11 7 44
|
fsumsub |
|- ( ph -> sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) = ( sum_ k e. ( M ..^ N ) X - sum_ k e. ( M ..^ N ) ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) |
| 46 |
|
vex |
|- y e. _V |
| 47 |
46
|
a1i |
|- ( y = M -> y e. _V ) |
| 48 |
|
eqeq2 |
|- ( y = M -> ( x = y <-> x = M ) ) |
| 49 |
48
|
biimpa |
|- ( ( y = M /\ x = y ) -> x = M ) |
| 50 |
49 5
|
syl |
|- ( ( y = M /\ x = y ) -> A = C ) |
| 51 |
47 50
|
csbied |
|- ( y = M -> [_ y / x ]_ A = C ) |
| 52 |
46
|
a1i |
|- ( y = N -> y e. _V ) |
| 53 |
|
eqeq2 |
|- ( y = N -> ( x = y <-> x = N ) ) |
| 54 |
53
|
biimpa |
|- ( ( y = N /\ x = y ) -> x = N ) |
| 55 |
54 6
|
syl |
|- ( ( y = N /\ x = y ) -> A = D ) |
| 56 |
52 55
|
csbied |
|- ( y = N -> [_ y / x ]_ A = D ) |
| 57 |
40 35 51 56 1 32
|
telfsumo2 |
|- ( ph -> sum_ k e. ( M ..^ N ) ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) = ( D - C ) ) |
| 58 |
57
|
oveq2d |
|- ( ph -> ( sum_ k e. ( M ..^ N ) X - sum_ k e. ( M ..^ N ) ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) = ( sum_ k e. ( M ..^ N ) X - ( D - C ) ) ) |
| 59 |
45 58
|
eqtrd |
|- ( ph -> sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) = ( sum_ k e. ( M ..^ N ) X - ( D - C ) ) ) |
| 60 |
59
|
fveq2d |
|- ( ph -> ( abs ` sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) = ( abs ` ( sum_ k e. ( M ..^ N ) X - ( D - C ) ) ) ) |
| 61 |
7 44
|
subcld |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) e. CC ) |
| 62 |
11 61
|
fsumcl |
|- ( ph -> sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) e. CC ) |
| 63 |
62
|
abscld |
|- ( ph -> ( abs ` sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) e. RR ) |
| 64 |
61
|
abscld |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( abs ` ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) e. RR ) |
| 65 |
11 64
|
fsumrecl |
|- ( ph -> sum_ k e. ( M ..^ N ) ( abs ` ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) e. RR ) |
| 66 |
11 8
|
fsumrecl |
|- ( ph -> sum_ k e. ( M ..^ N ) Y e. RR ) |
| 67 |
11 61
|
fsumabs |
|- ( ph -> ( abs ` sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) <_ sum_ k e. ( M ..^ N ) ( abs ` ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) ) |
| 68 |
|
elfzoelz |
|- ( k e. ( M ..^ N ) -> k e. ZZ ) |
| 69 |
68
|
adantl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. ZZ ) |
| 70 |
69
|
zred |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. RR ) |
| 71 |
70
|
rexrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. RR* ) |
| 72 |
|
peano2re |
|- ( k e. RR -> ( k + 1 ) e. RR ) |
| 73 |
70 72
|
syl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. RR ) |
| 74 |
73
|
rexrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. RR* ) |
| 75 |
70
|
lep1d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> k <_ ( k + 1 ) ) |
| 76 |
|
ubicc2 |
|- ( ( k e. RR* /\ ( k + 1 ) e. RR* /\ k <_ ( k + 1 ) ) -> ( k + 1 ) e. ( k [,] ( k + 1 ) ) ) |
| 77 |
71 74 75 76
|
syl3anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. ( k [,] ( k + 1 ) ) ) |
| 78 |
|
lbicc2 |
|- ( ( k e. RR* /\ ( k + 1 ) e. RR* /\ k <_ ( k + 1 ) ) -> k e. ( k [,] ( k + 1 ) ) ) |
| 79 |
71 74 75 78
|
syl3anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. ( k [,] ( k + 1 ) ) ) |
| 80 |
13
|
zred |
|- ( ph -> M e. RR ) |
| 81 |
80
|
adantr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> M e. RR ) |
| 82 |
15
|
zred |
|- ( ph -> N e. RR ) |
| 83 |
82
|
adantr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> N e. RR ) |
| 84 |
|
elfzole1 |
|- ( k e. ( M ..^ N ) -> M <_ k ) |
| 85 |
84
|
adantl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> M <_ k ) |
| 86 |
34
|
adantl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. ( M ... N ) ) |
| 87 |
|
elfzle2 |
|- ( ( k + 1 ) e. ( M ... N ) -> ( k + 1 ) <_ N ) |
| 88 |
86 87
|
syl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) <_ N ) |
| 89 |
|
iccss |
|- ( ( ( M e. RR /\ N e. RR ) /\ ( M <_ k /\ ( k + 1 ) <_ N ) ) -> ( k [,] ( k + 1 ) ) C_ ( M [,] N ) ) |
| 90 |
81 83 85 88 89
|
syl22anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k [,] ( k + 1 ) ) C_ ( M [,] N ) ) |
| 91 |
90
|
resmptd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( x e. ( M [,] N ) |-> ( ( X x. x ) - A ) ) |` ( k [,] ( k + 1 ) ) ) = ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) |
| 92 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 93 |
92
|
subcn |
|- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 94 |
93
|
a1i |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 95 |
|
iccssre |
|- ( ( M e. RR /\ N e. RR ) -> ( M [,] N ) C_ RR ) |
| 96 |
80 82 95
|
syl2anc |
|- ( ph -> ( M [,] N ) C_ RR ) |
| 97 |
96
|
adantr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M [,] N ) C_ RR ) |
| 98 |
|
ax-resscn |
|- RR C_ CC |
| 99 |
97 98
|
sstrdi |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M [,] N ) C_ CC ) |
| 100 |
|
ssid |
|- CC C_ CC |
| 101 |
100
|
a1i |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> CC C_ CC ) |
| 102 |
|
cncfmptc |
|- ( ( X e. CC /\ ( M [,] N ) C_ CC /\ CC C_ CC ) -> ( x e. ( M [,] N ) |-> X ) e. ( ( M [,] N ) -cn-> CC ) ) |
| 103 |
7 99 101 102
|
syl3anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> X ) e. ( ( M [,] N ) -cn-> CC ) ) |
| 104 |
|
cncfmptid |
|- ( ( ( M [,] N ) C_ CC /\ CC C_ CC ) -> ( x e. ( M [,] N ) |-> x ) e. ( ( M [,] N ) -cn-> CC ) ) |
| 105 |
99 100 104
|
sylancl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> x ) e. ( ( M [,] N ) -cn-> CC ) ) |
| 106 |
103 105
|
mulcncf |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> ( X x. x ) ) e. ( ( M [,] N ) -cn-> CC ) ) |
| 107 |
2
|
adantr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> CC ) ) |
| 108 |
92 94 106 107
|
cncfmpt2f |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> ( ( X x. x ) - A ) ) e. ( ( M [,] N ) -cn-> CC ) ) |
| 109 |
|
rescncf |
|- ( ( k [,] ( k + 1 ) ) C_ ( M [,] N ) -> ( ( x e. ( M [,] N ) |-> ( ( X x. x ) - A ) ) e. ( ( M [,] N ) -cn-> CC ) -> ( ( x e. ( M [,] N ) |-> ( ( X x. x ) - A ) ) |` ( k [,] ( k + 1 ) ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> CC ) ) ) |
| 110 |
90 108 109
|
sylc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( x e. ( M [,] N ) |-> ( ( X x. x ) - A ) ) |` ( k [,] ( k + 1 ) ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> CC ) ) |
| 111 |
91 110
|
eqeltrrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> CC ) ) |
| 112 |
98
|
a1i |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> RR C_ CC ) |
| 113 |
90 97
|
sstrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k [,] ( k + 1 ) ) C_ RR ) |
| 114 |
90
|
sselda |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k [,] ( k + 1 ) ) ) -> x e. ( M [,] N ) ) |
| 115 |
7
|
adantr |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> X e. CC ) |
| 116 |
99
|
sselda |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> x e. CC ) |
| 117 |
115 116
|
mulcld |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> ( X x. x ) e. CC ) |
| 118 |
25
|
r19.21bi |
|- ( ( ph /\ x e. ( M [,] N ) ) -> A e. CC ) |
| 119 |
118
|
adantlr |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> A e. CC ) |
| 120 |
117 119
|
subcld |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> ( ( X x. x ) - A ) e. CC ) |
| 121 |
114 120
|
syldan |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k [,] ( k + 1 ) ) ) -> ( ( X x. x ) - A ) e. CC ) |
| 122 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 123 |
|
iccntr |
|- ( ( k e. RR /\ ( k + 1 ) e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( k [,] ( k + 1 ) ) ) = ( k (,) ( k + 1 ) ) ) |
| 124 |
70 73 123
|
syl2anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( k [,] ( k + 1 ) ) ) = ( k (,) ( k + 1 ) ) ) |
| 125 |
112 113 121 122 92 124
|
dvmptntr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) = ( RR _D ( x e. ( k (,) ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ) |
| 126 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 127 |
126
|
a1i |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> RR e. { RR , CC } ) |
| 128 |
|
ioossicc |
|- ( M (,) N ) C_ ( M [,] N ) |
| 129 |
128
|
sseli |
|- ( x e. ( M (,) N ) -> x e. ( M [,] N ) ) |
| 130 |
129 120
|
sylan2 |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> ( ( X x. x ) - A ) e. CC ) |
| 131 |
|
ovex |
|- ( X - B ) e. _V |
| 132 |
131
|
a1i |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> ( X - B ) e. _V ) |
| 133 |
129 117
|
sylan2 |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> ( X x. x ) e. CC ) |
| 134 |
7
|
adantr |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> X e. CC ) |
| 135 |
128 99
|
sstrid |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) N ) C_ CC ) |
| 136 |
135
|
sselda |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> x e. CC ) |
| 137 |
|
1cnd |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> 1 e. CC ) |
| 138 |
112
|
sselda |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. RR ) -> x e. CC ) |
| 139 |
|
1cnd |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. RR ) -> 1 e. CC ) |
| 140 |
127
|
dvmptid |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. RR |-> x ) ) = ( x e. RR |-> 1 ) ) |
| 141 |
128 97
|
sstrid |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) N ) C_ RR ) |
| 142 |
|
iooretop |
|- ( M (,) N ) e. ( topGen ` ran (,) ) |
| 143 |
142
|
a1i |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) N ) e. ( topGen ` ran (,) ) ) |
| 144 |
127 138 139 140 141 122 92 143
|
dvmptres |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> x ) ) = ( x e. ( M (,) N ) |-> 1 ) ) |
| 145 |
127 136 137 144 7
|
dvmptcmul |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> ( X x. x ) ) ) = ( x e. ( M (,) N ) |-> ( X x. 1 ) ) ) |
| 146 |
7
|
mulridd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. 1 ) = X ) |
| 147 |
146
|
mpteq2dv |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M (,) N ) |-> ( X x. 1 ) ) = ( x e. ( M (,) N ) |-> X ) ) |
| 148 |
145 147
|
eqtrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> ( X x. x ) ) ) = ( x e. ( M (,) N ) |-> X ) ) |
| 149 |
129 119
|
sylan2 |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> A e. CC ) |
| 150 |
3
|
adantlr |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> B e. V ) |
| 151 |
4
|
adantr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) |
| 152 |
127 133 134 148 149 150 151
|
dvmptsub |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> ( ( X x. x ) - A ) ) ) = ( x e. ( M (,) N ) |-> ( X - B ) ) ) |
| 153 |
81
|
rexrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> M e. RR* ) |
| 154 |
|
iooss1 |
|- ( ( M e. RR* /\ M <_ k ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) ( k + 1 ) ) ) |
| 155 |
153 85 154
|
syl2anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) ( k + 1 ) ) ) |
| 156 |
83
|
rexrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> N e. RR* ) |
| 157 |
|
iooss2 |
|- ( ( N e. RR* /\ ( k + 1 ) <_ N ) -> ( M (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
| 158 |
156 88 157
|
syl2anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
| 159 |
155 158
|
sstrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
| 160 |
|
iooretop |
|- ( k (,) ( k + 1 ) ) e. ( topGen ` ran (,) ) |
| 161 |
160
|
a1i |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) e. ( topGen ` ran (,) ) ) |
| 162 |
127 130 132 152 159 122 92 161
|
dvmptres |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( k (,) ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) = ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ) |
| 163 |
125 162
|
eqtrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) = ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ) |
| 164 |
163
|
dmeqd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) = dom ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ) |
| 165 |
|
eqid |
|- ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) = ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) |
| 166 |
131 165
|
dmmpti |
|- dom ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) = ( k (,) ( k + 1 ) ) |
| 167 |
164 166
|
eqtrdi |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) = ( k (,) ( k + 1 ) ) ) |
| 168 |
163
|
adantr |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) = ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ) |
| 169 |
168
|
fveq1d |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) = ( ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ` x ) ) |
| 170 |
|
simpr |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> x e. ( k (,) ( k + 1 ) ) ) |
| 171 |
165
|
fvmpt2 |
|- ( ( x e. ( k (,) ( k + 1 ) ) /\ ( X - B ) e. _V ) -> ( ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ` x ) = ( X - B ) ) |
| 172 |
170 131 171
|
sylancl |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ` x ) = ( X - B ) ) |
| 173 |
169 172
|
eqtrd |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) = ( X - B ) ) |
| 174 |
173
|
fveq2d |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) ) = ( abs ` ( X - B ) ) ) |
| 175 |
9
|
anassrs |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( abs ` ( X - B ) ) <_ Y ) |
| 176 |
174 175
|
eqbrtrd |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) ) <_ Y ) |
| 177 |
176
|
ralrimiva |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( k (,) ( k + 1 ) ) ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) ) <_ Y ) |
| 178 |
|
nfcv |
|- F/_ x abs |
| 179 |
|
nfcv |
|- F/_ x RR |
| 180 |
|
nfcv |
|- F/_ x _D |
| 181 |
|
nfmpt1 |
|- F/_ x ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) |
| 182 |
179 180 181
|
nfov |
|- F/_ x ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) |
| 183 |
|
nfcv |
|- F/_ x y |
| 184 |
182 183
|
nffv |
|- F/_ x ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) |
| 185 |
178 184
|
nffv |
|- F/_ x ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) ) |
| 186 |
|
nfcv |
|- F/_ x <_ |
| 187 |
|
nfcv |
|- F/_ x Y |
| 188 |
185 186 187
|
nfbr |
|- F/ x ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) ) <_ Y |
| 189 |
|
2fveq3 |
|- ( x = y -> ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) ) = ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) ) ) |
| 190 |
189
|
breq1d |
|- ( x = y -> ( ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) ) <_ Y <-> ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) ) <_ Y ) ) |
| 191 |
188 190
|
rspc |
|- ( y e. ( k (,) ( k + 1 ) ) -> ( A. x e. ( k (,) ( k + 1 ) ) ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) ) <_ Y -> ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) ) <_ Y ) ) |
| 192 |
177 191
|
mpan9 |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k (,) ( k + 1 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) ) <_ Y ) |
| 193 |
70 73 111 167 8 192
|
dvlip |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ ( ( k + 1 ) e. ( k [,] ( k + 1 ) ) /\ k e. ( k [,] ( k + 1 ) ) ) ) -> ( abs ` ( ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) - ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) ) ) <_ ( Y x. ( abs ` ( ( k + 1 ) - k ) ) ) ) |
| 194 |
193
|
ex |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( ( k + 1 ) e. ( k [,] ( k + 1 ) ) /\ k e. ( k [,] ( k + 1 ) ) ) -> ( abs ` ( ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) - ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) ) ) <_ ( Y x. ( abs ` ( ( k + 1 ) - k ) ) ) ) ) |
| 195 |
77 79 194
|
mp2and |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( abs ` ( ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) - ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) ) ) <_ ( Y x. ( abs ` ( ( k + 1 ) - k ) ) ) ) |
| 196 |
|
ovex |
|- ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) e. _V |
| 197 |
|
nfcv |
|- F/_ x ( k + 1 ) |
| 198 |
|
nfcv |
|- F/_ x ( X x. ( k + 1 ) ) |
| 199 |
|
nfcv |
|- F/_ x - |
| 200 |
|
nfcsb1v |
|- F/_ x [_ ( k + 1 ) / x ]_ A |
| 201 |
198 199 200
|
nfov |
|- F/_ x ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) |
| 202 |
|
oveq2 |
|- ( x = ( k + 1 ) -> ( X x. x ) = ( X x. ( k + 1 ) ) ) |
| 203 |
|
csbeq1a |
|- ( x = ( k + 1 ) -> A = [_ ( k + 1 ) / x ]_ A ) |
| 204 |
202 203
|
oveq12d |
|- ( x = ( k + 1 ) -> ( ( X x. x ) - A ) = ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) ) |
| 205 |
|
eqid |
|- ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) = ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) |
| 206 |
197 201 204 205
|
fvmptf |
|- ( ( ( k + 1 ) e. ( k [,] ( k + 1 ) ) /\ ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) e. _V ) -> ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) = ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) ) |
| 207 |
77 196 206
|
sylancl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) = ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) ) |
| 208 |
70
|
recnd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. CC ) |
| 209 |
7 208
|
mulcld |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. k ) e. CC ) |
| 210 |
209 43
|
subcld |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( X x. k ) - [_ k / x ]_ A ) e. CC ) |
| 211 |
|
nfcv |
|- F/_ x k |
| 212 |
|
nfcv |
|- F/_ x ( X x. k ) |
| 213 |
|
nfcsb1v |
|- F/_ x [_ k / x ]_ A |
| 214 |
212 199 213
|
nfov |
|- F/_ x ( ( X x. k ) - [_ k / x ]_ A ) |
| 215 |
|
oveq2 |
|- ( x = k -> ( X x. x ) = ( X x. k ) ) |
| 216 |
|
csbeq1a |
|- ( x = k -> A = [_ k / x ]_ A ) |
| 217 |
215 216
|
oveq12d |
|- ( x = k -> ( ( X x. x ) - A ) = ( ( X x. k ) - [_ k / x ]_ A ) ) |
| 218 |
211 214 217 205
|
fvmptf |
|- ( ( k e. ( k [,] ( k + 1 ) ) /\ ( ( X x. k ) - [_ k / x ]_ A ) e. CC ) -> ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) = ( ( X x. k ) - [_ k / x ]_ A ) ) |
| 219 |
79 210 218
|
syl2anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) = ( ( X x. k ) - [_ k / x ]_ A ) ) |
| 220 |
207 219
|
oveq12d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) - ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) ) = ( ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) - ( ( X x. k ) - [_ k / x ]_ A ) ) ) |
| 221 |
|
peano2cn |
|- ( k e. CC -> ( k + 1 ) e. CC ) |
| 222 |
208 221
|
syl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. CC ) |
| 223 |
7 222
|
mulcld |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. ( k + 1 ) ) e. CC ) |
| 224 |
223 209 38 43
|
sub4d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( ( X x. ( k + 1 ) ) - ( X x. k ) ) - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) = ( ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) - ( ( X x. k ) - [_ k / x ]_ A ) ) ) |
| 225 |
|
1cnd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> 1 e. CC ) |
| 226 |
208 225
|
pncan2d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( k + 1 ) - k ) = 1 ) |
| 227 |
226
|
oveq2d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. ( ( k + 1 ) - k ) ) = ( X x. 1 ) ) |
| 228 |
7 222 208
|
subdid |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. ( ( k + 1 ) - k ) ) = ( ( X x. ( k + 1 ) ) - ( X x. k ) ) ) |
| 229 |
227 228 146
|
3eqtr3d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( X x. ( k + 1 ) ) - ( X x. k ) ) = X ) |
| 230 |
229
|
oveq1d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( ( X x. ( k + 1 ) ) - ( X x. k ) ) - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) = ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) |
| 231 |
220 224 230
|
3eqtr2rd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) = ( ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) - ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) ) ) |
| 232 |
231
|
fveq2d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( abs ` ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) = ( abs ` ( ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) - ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) ) ) ) |
| 233 |
226
|
fveq2d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( abs ` ( ( k + 1 ) - k ) ) = ( abs ` 1 ) ) |
| 234 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 235 |
233 234
|
eqtrdi |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( abs ` ( ( k + 1 ) - k ) ) = 1 ) |
| 236 |
235
|
oveq2d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( Y x. ( abs ` ( ( k + 1 ) - k ) ) ) = ( Y x. 1 ) ) |
| 237 |
8
|
recnd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> Y e. CC ) |
| 238 |
237
|
mulridd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( Y x. 1 ) = Y ) |
| 239 |
236 238
|
eqtr2d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> Y = ( Y x. ( abs ` ( ( k + 1 ) - k ) ) ) ) |
| 240 |
195 232 239
|
3brtr4d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( abs ` ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) <_ Y ) |
| 241 |
11 64 8 240
|
fsumle |
|- ( ph -> sum_ k e. ( M ..^ N ) ( abs ` ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) <_ sum_ k e. ( M ..^ N ) Y ) |
| 242 |
63 65 66 67 241
|
letrd |
|- ( ph -> ( abs ` sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) <_ sum_ k e. ( M ..^ N ) Y ) |
| 243 |
60 242
|
eqbrtrrd |
|- ( ph -> ( abs ` ( sum_ k e. ( M ..^ N ) X - ( D - C ) ) ) <_ sum_ k e. ( M ..^ N ) Y ) |