| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvfsumabs.m |  |-  ( ph -> N e. ( ZZ>= ` M ) ) | 
						
							| 2 |  | dvfsumabs.a |  |-  ( ph -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> CC ) ) | 
						
							| 3 |  | dvfsumabs.v |  |-  ( ( ph /\ x e. ( M (,) N ) ) -> B e. V ) | 
						
							| 4 |  | dvfsumabs.b |  |-  ( ph -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) | 
						
							| 5 |  | dvfsumabs.c |  |-  ( x = M -> A = C ) | 
						
							| 6 |  | dvfsumabs.d |  |-  ( x = N -> A = D ) | 
						
							| 7 |  | dvfsumabs.x |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> X e. CC ) | 
						
							| 8 |  | dvfsumabs.y |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> Y e. RR ) | 
						
							| 9 |  | dvfsumabs.l |  |-  ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> ( abs ` ( X - B ) ) <_ Y ) | 
						
							| 10 |  | fzofi |  |-  ( M ..^ N ) e. Fin | 
						
							| 11 | 10 | a1i |  |-  ( ph -> ( M ..^ N ) e. Fin ) | 
						
							| 12 |  | eluzel2 |  |-  ( N e. ( ZZ>= ` M ) -> M e. ZZ ) | 
						
							| 13 | 1 12 | syl |  |-  ( ph -> M e. ZZ ) | 
						
							| 14 |  | eluzelz |  |-  ( N e. ( ZZ>= ` M ) -> N e. ZZ ) | 
						
							| 15 | 1 14 | syl |  |-  ( ph -> N e. ZZ ) | 
						
							| 16 |  | fzval2 |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M ... N ) = ( ( M [,] N ) i^i ZZ ) ) | 
						
							| 17 | 13 15 16 | syl2anc |  |-  ( ph -> ( M ... N ) = ( ( M [,] N ) i^i ZZ ) ) | 
						
							| 18 |  | inss1 |  |-  ( ( M [,] N ) i^i ZZ ) C_ ( M [,] N ) | 
						
							| 19 | 17 18 | eqsstrdi |  |-  ( ph -> ( M ... N ) C_ ( M [,] N ) ) | 
						
							| 20 | 19 | sselda |  |-  ( ( ph /\ y e. ( M ... N ) ) -> y e. ( M [,] N ) ) | 
						
							| 21 |  | cncff |  |-  ( ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> CC ) -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> CC ) | 
						
							| 22 | 2 21 | syl |  |-  ( ph -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> CC ) | 
						
							| 23 |  | eqid |  |-  ( x e. ( M [,] N ) |-> A ) = ( x e. ( M [,] N ) |-> A ) | 
						
							| 24 | 23 | fmpt |  |-  ( A. x e. ( M [,] N ) A e. CC <-> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> CC ) | 
						
							| 25 | 22 24 | sylibr |  |-  ( ph -> A. x e. ( M [,] N ) A e. CC ) | 
						
							| 26 |  | nfcsb1v |  |-  F/_ x [_ y / x ]_ A | 
						
							| 27 | 26 | nfel1 |  |-  F/ x [_ y / x ]_ A e. CC | 
						
							| 28 |  | csbeq1a |  |-  ( x = y -> A = [_ y / x ]_ A ) | 
						
							| 29 | 28 | eleq1d |  |-  ( x = y -> ( A e. CC <-> [_ y / x ]_ A e. CC ) ) | 
						
							| 30 | 27 29 | rspc |  |-  ( y e. ( M [,] N ) -> ( A. x e. ( M [,] N ) A e. CC -> [_ y / x ]_ A e. CC ) ) | 
						
							| 31 | 25 30 | mpan9 |  |-  ( ( ph /\ y e. ( M [,] N ) ) -> [_ y / x ]_ A e. CC ) | 
						
							| 32 | 20 31 | syldan |  |-  ( ( ph /\ y e. ( M ... N ) ) -> [_ y / x ]_ A e. CC ) | 
						
							| 33 | 32 | ralrimiva |  |-  ( ph -> A. y e. ( M ... N ) [_ y / x ]_ A e. CC ) | 
						
							| 34 |  | fzofzp1 |  |-  ( k e. ( M ..^ N ) -> ( k + 1 ) e. ( M ... N ) ) | 
						
							| 35 |  | csbeq1 |  |-  ( y = ( k + 1 ) -> [_ y / x ]_ A = [_ ( k + 1 ) / x ]_ A ) | 
						
							| 36 | 35 | eleq1d |  |-  ( y = ( k + 1 ) -> ( [_ y / x ]_ A e. CC <-> [_ ( k + 1 ) / x ]_ A e. CC ) ) | 
						
							| 37 | 36 | rspccva |  |-  ( ( A. y e. ( M ... N ) [_ y / x ]_ A e. CC /\ ( k + 1 ) e. ( M ... N ) ) -> [_ ( k + 1 ) / x ]_ A e. CC ) | 
						
							| 38 | 33 34 37 | syl2an |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> [_ ( k + 1 ) / x ]_ A e. CC ) | 
						
							| 39 |  | elfzofz |  |-  ( k e. ( M ..^ N ) -> k e. ( M ... N ) ) | 
						
							| 40 |  | csbeq1 |  |-  ( y = k -> [_ y / x ]_ A = [_ k / x ]_ A ) | 
						
							| 41 | 40 | eleq1d |  |-  ( y = k -> ( [_ y / x ]_ A e. CC <-> [_ k / x ]_ A e. CC ) ) | 
						
							| 42 | 41 | rspccva |  |-  ( ( A. y e. ( M ... N ) [_ y / x ]_ A e. CC /\ k e. ( M ... N ) ) -> [_ k / x ]_ A e. CC ) | 
						
							| 43 | 33 39 42 | syl2an |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> [_ k / x ]_ A e. CC ) | 
						
							| 44 | 38 43 | subcld |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) e. CC ) | 
						
							| 45 | 11 7 44 | fsumsub |  |-  ( ph -> sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) = ( sum_ k e. ( M ..^ N ) X - sum_ k e. ( M ..^ N ) ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) | 
						
							| 46 |  | vex |  |-  y e. _V | 
						
							| 47 | 46 | a1i |  |-  ( y = M -> y e. _V ) | 
						
							| 48 |  | eqeq2 |  |-  ( y = M -> ( x = y <-> x = M ) ) | 
						
							| 49 | 48 | biimpa |  |-  ( ( y = M /\ x = y ) -> x = M ) | 
						
							| 50 | 49 5 | syl |  |-  ( ( y = M /\ x = y ) -> A = C ) | 
						
							| 51 | 47 50 | csbied |  |-  ( y = M -> [_ y / x ]_ A = C ) | 
						
							| 52 | 46 | a1i |  |-  ( y = N -> y e. _V ) | 
						
							| 53 |  | eqeq2 |  |-  ( y = N -> ( x = y <-> x = N ) ) | 
						
							| 54 | 53 | biimpa |  |-  ( ( y = N /\ x = y ) -> x = N ) | 
						
							| 55 | 54 6 | syl |  |-  ( ( y = N /\ x = y ) -> A = D ) | 
						
							| 56 | 52 55 | csbied |  |-  ( y = N -> [_ y / x ]_ A = D ) | 
						
							| 57 | 40 35 51 56 1 32 | telfsumo2 |  |-  ( ph -> sum_ k e. ( M ..^ N ) ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) = ( D - C ) ) | 
						
							| 58 | 57 | oveq2d |  |-  ( ph -> ( sum_ k e. ( M ..^ N ) X - sum_ k e. ( M ..^ N ) ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) = ( sum_ k e. ( M ..^ N ) X - ( D - C ) ) ) | 
						
							| 59 | 45 58 | eqtrd |  |-  ( ph -> sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) = ( sum_ k e. ( M ..^ N ) X - ( D - C ) ) ) | 
						
							| 60 | 59 | fveq2d |  |-  ( ph -> ( abs ` sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) = ( abs ` ( sum_ k e. ( M ..^ N ) X - ( D - C ) ) ) ) | 
						
							| 61 | 7 44 | subcld |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) e. CC ) | 
						
							| 62 | 11 61 | fsumcl |  |-  ( ph -> sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) e. CC ) | 
						
							| 63 | 62 | abscld |  |-  ( ph -> ( abs ` sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) e. RR ) | 
						
							| 64 | 61 | abscld |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( abs ` ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) e. RR ) | 
						
							| 65 | 11 64 | fsumrecl |  |-  ( ph -> sum_ k e. ( M ..^ N ) ( abs ` ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) e. RR ) | 
						
							| 66 | 11 8 | fsumrecl |  |-  ( ph -> sum_ k e. ( M ..^ N ) Y e. RR ) | 
						
							| 67 | 11 61 | fsumabs |  |-  ( ph -> ( abs ` sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) <_ sum_ k e. ( M ..^ N ) ( abs ` ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) ) | 
						
							| 68 |  | elfzoelz |  |-  ( k e. ( M ..^ N ) -> k e. ZZ ) | 
						
							| 69 | 68 | adantl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> k e. ZZ ) | 
						
							| 70 | 69 | zred |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> k e. RR ) | 
						
							| 71 | 70 | rexrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> k e. RR* ) | 
						
							| 72 |  | peano2re |  |-  ( k e. RR -> ( k + 1 ) e. RR ) | 
						
							| 73 | 70 72 | syl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. RR ) | 
						
							| 74 | 73 | rexrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. RR* ) | 
						
							| 75 | 70 | lep1d |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> k <_ ( k + 1 ) ) | 
						
							| 76 |  | ubicc2 |  |-  ( ( k e. RR* /\ ( k + 1 ) e. RR* /\ k <_ ( k + 1 ) ) -> ( k + 1 ) e. ( k [,] ( k + 1 ) ) ) | 
						
							| 77 | 71 74 75 76 | syl3anc |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. ( k [,] ( k + 1 ) ) ) | 
						
							| 78 |  | lbicc2 |  |-  ( ( k e. RR* /\ ( k + 1 ) e. RR* /\ k <_ ( k + 1 ) ) -> k e. ( k [,] ( k + 1 ) ) ) | 
						
							| 79 | 71 74 75 78 | syl3anc |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> k e. ( k [,] ( k + 1 ) ) ) | 
						
							| 80 | 13 | zred |  |-  ( ph -> M e. RR ) | 
						
							| 81 | 80 | adantr |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> M e. RR ) | 
						
							| 82 | 15 | zred |  |-  ( ph -> N e. RR ) | 
						
							| 83 | 82 | adantr |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> N e. RR ) | 
						
							| 84 |  | elfzole1 |  |-  ( k e. ( M ..^ N ) -> M <_ k ) | 
						
							| 85 | 84 | adantl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> M <_ k ) | 
						
							| 86 | 34 | adantl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. ( M ... N ) ) | 
						
							| 87 |  | elfzle2 |  |-  ( ( k + 1 ) e. ( M ... N ) -> ( k + 1 ) <_ N ) | 
						
							| 88 | 86 87 | syl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) <_ N ) | 
						
							| 89 |  | iccss |  |-  ( ( ( M e. RR /\ N e. RR ) /\ ( M <_ k /\ ( k + 1 ) <_ N ) ) -> ( k [,] ( k + 1 ) ) C_ ( M [,] N ) ) | 
						
							| 90 | 81 83 85 88 89 | syl22anc |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k [,] ( k + 1 ) ) C_ ( M [,] N ) ) | 
						
							| 91 | 90 | resmptd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( x e. ( M [,] N ) |-> ( ( X x. x ) - A ) ) |` ( k [,] ( k + 1 ) ) ) = ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) | 
						
							| 92 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 93 | 92 | subcn |  |-  - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 94 | 93 | a1i |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 95 |  | iccssre |  |-  ( ( M e. RR /\ N e. RR ) -> ( M [,] N ) C_ RR ) | 
						
							| 96 | 80 82 95 | syl2anc |  |-  ( ph -> ( M [,] N ) C_ RR ) | 
						
							| 97 | 96 | adantr |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( M [,] N ) C_ RR ) | 
						
							| 98 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 99 | 97 98 | sstrdi |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( M [,] N ) C_ CC ) | 
						
							| 100 |  | ssid |  |-  CC C_ CC | 
						
							| 101 | 100 | a1i |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> CC C_ CC ) | 
						
							| 102 |  | cncfmptc |  |-  ( ( X e. CC /\ ( M [,] N ) C_ CC /\ CC C_ CC ) -> ( x e. ( M [,] N ) |-> X ) e. ( ( M [,] N ) -cn-> CC ) ) | 
						
							| 103 | 7 99 101 102 | syl3anc |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> X ) e. ( ( M [,] N ) -cn-> CC ) ) | 
						
							| 104 |  | cncfmptid |  |-  ( ( ( M [,] N ) C_ CC /\ CC C_ CC ) -> ( x e. ( M [,] N ) |-> x ) e. ( ( M [,] N ) -cn-> CC ) ) | 
						
							| 105 | 99 100 104 | sylancl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> x ) e. ( ( M [,] N ) -cn-> CC ) ) | 
						
							| 106 | 103 105 | mulcncf |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> ( X x. x ) ) e. ( ( M [,] N ) -cn-> CC ) ) | 
						
							| 107 | 2 | adantr |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> CC ) ) | 
						
							| 108 | 92 94 106 107 | cncfmpt2f |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> ( ( X x. x ) - A ) ) e. ( ( M [,] N ) -cn-> CC ) ) | 
						
							| 109 |  | rescncf |  |-  ( ( k [,] ( k + 1 ) ) C_ ( M [,] N ) -> ( ( x e. ( M [,] N ) |-> ( ( X x. x ) - A ) ) e. ( ( M [,] N ) -cn-> CC ) -> ( ( x e. ( M [,] N ) |-> ( ( X x. x ) - A ) ) |` ( k [,] ( k + 1 ) ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> CC ) ) ) | 
						
							| 110 | 90 108 109 | sylc |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( x e. ( M [,] N ) |-> ( ( X x. x ) - A ) ) |` ( k [,] ( k + 1 ) ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> CC ) ) | 
						
							| 111 | 91 110 | eqeltrrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> CC ) ) | 
						
							| 112 | 98 | a1i |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> RR C_ CC ) | 
						
							| 113 | 90 97 | sstrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k [,] ( k + 1 ) ) C_ RR ) | 
						
							| 114 | 90 | sselda |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k [,] ( k + 1 ) ) ) -> x e. ( M [,] N ) ) | 
						
							| 115 | 7 | adantr |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> X e. CC ) | 
						
							| 116 | 99 | sselda |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> x e. CC ) | 
						
							| 117 | 115 116 | mulcld |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> ( X x. x ) e. CC ) | 
						
							| 118 | 25 | r19.21bi |  |-  ( ( ph /\ x e. ( M [,] N ) ) -> A e. CC ) | 
						
							| 119 | 118 | adantlr |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> A e. CC ) | 
						
							| 120 | 117 119 | subcld |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> ( ( X x. x ) - A ) e. CC ) | 
						
							| 121 | 114 120 | syldan |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k [,] ( k + 1 ) ) ) -> ( ( X x. x ) - A ) e. CC ) | 
						
							| 122 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 123 |  | iccntr |  |-  ( ( k e. RR /\ ( k + 1 ) e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( k [,] ( k + 1 ) ) ) = ( k (,) ( k + 1 ) ) ) | 
						
							| 124 | 70 73 123 | syl2anc |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( k [,] ( k + 1 ) ) ) = ( k (,) ( k + 1 ) ) ) | 
						
							| 125 | 112 113 121 122 92 124 | dvmptntr |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) = ( RR _D ( x e. ( k (,) ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ) | 
						
							| 126 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 127 | 126 | a1i |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> RR e. { RR , CC } ) | 
						
							| 128 |  | ioossicc |  |-  ( M (,) N ) C_ ( M [,] N ) | 
						
							| 129 | 128 | sseli |  |-  ( x e. ( M (,) N ) -> x e. ( M [,] N ) ) | 
						
							| 130 | 129 120 | sylan2 |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> ( ( X x. x ) - A ) e. CC ) | 
						
							| 131 |  | ovex |  |-  ( X - B ) e. _V | 
						
							| 132 | 131 | a1i |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> ( X - B ) e. _V ) | 
						
							| 133 | 129 117 | sylan2 |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> ( X x. x ) e. CC ) | 
						
							| 134 | 7 | adantr |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> X e. CC ) | 
						
							| 135 | 128 99 | sstrid |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) N ) C_ CC ) | 
						
							| 136 | 135 | sselda |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> x e. CC ) | 
						
							| 137 |  | 1cnd |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> 1 e. CC ) | 
						
							| 138 | 112 | sselda |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. RR ) -> x e. CC ) | 
						
							| 139 |  | 1cnd |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. RR ) -> 1 e. CC ) | 
						
							| 140 | 127 | dvmptid |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. RR |-> x ) ) = ( x e. RR |-> 1 ) ) | 
						
							| 141 | 128 97 | sstrid |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) N ) C_ RR ) | 
						
							| 142 |  | iooretop |  |-  ( M (,) N ) e. ( topGen ` ran (,) ) | 
						
							| 143 | 142 | a1i |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) N ) e. ( topGen ` ran (,) ) ) | 
						
							| 144 | 127 138 139 140 141 122 92 143 | dvmptres |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> x ) ) = ( x e. ( M (,) N ) |-> 1 ) ) | 
						
							| 145 | 127 136 137 144 7 | dvmptcmul |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> ( X x. x ) ) ) = ( x e. ( M (,) N ) |-> ( X x. 1 ) ) ) | 
						
							| 146 | 7 | mulridd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. 1 ) = X ) | 
						
							| 147 | 146 | mpteq2dv |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M (,) N ) |-> ( X x. 1 ) ) = ( x e. ( M (,) N ) |-> X ) ) | 
						
							| 148 | 145 147 | eqtrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> ( X x. x ) ) ) = ( x e. ( M (,) N ) |-> X ) ) | 
						
							| 149 | 129 119 | sylan2 |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> A e. CC ) | 
						
							| 150 | 3 | adantlr |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> B e. V ) | 
						
							| 151 | 4 | adantr |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) | 
						
							| 152 | 127 133 134 148 149 150 151 | dvmptsub |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> ( ( X x. x ) - A ) ) ) = ( x e. ( M (,) N ) |-> ( X - B ) ) ) | 
						
							| 153 | 81 | rexrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> M e. RR* ) | 
						
							| 154 |  | iooss1 |  |-  ( ( M e. RR* /\ M <_ k ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) ( k + 1 ) ) ) | 
						
							| 155 | 153 85 154 | syl2anc |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) ( k + 1 ) ) ) | 
						
							| 156 | 83 | rexrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> N e. RR* ) | 
						
							| 157 |  | iooss2 |  |-  ( ( N e. RR* /\ ( k + 1 ) <_ N ) -> ( M (,) ( k + 1 ) ) C_ ( M (,) N ) ) | 
						
							| 158 | 156 88 157 | syl2anc |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) ( k + 1 ) ) C_ ( M (,) N ) ) | 
						
							| 159 | 155 158 | sstrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) N ) ) | 
						
							| 160 |  | iooretop |  |-  ( k (,) ( k + 1 ) ) e. ( topGen ` ran (,) ) | 
						
							| 161 | 160 | a1i |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) e. ( topGen ` ran (,) ) ) | 
						
							| 162 | 127 130 132 152 159 122 92 161 | dvmptres |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( k (,) ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) = ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ) | 
						
							| 163 | 125 162 | eqtrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) = ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ) | 
						
							| 164 | 163 | dmeqd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) = dom ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ) | 
						
							| 165 |  | eqid |  |-  ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) = ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) | 
						
							| 166 | 131 165 | dmmpti |  |-  dom ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) = ( k (,) ( k + 1 ) ) | 
						
							| 167 | 164 166 | eqtrdi |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) = ( k (,) ( k + 1 ) ) ) | 
						
							| 168 | 163 | adantr |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) = ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ) | 
						
							| 169 | 168 | fveq1d |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) = ( ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ` x ) ) | 
						
							| 170 |  | simpr |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> x e. ( k (,) ( k + 1 ) ) ) | 
						
							| 171 | 165 | fvmpt2 |  |-  ( ( x e. ( k (,) ( k + 1 ) ) /\ ( X - B ) e. _V ) -> ( ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ` x ) = ( X - B ) ) | 
						
							| 172 | 170 131 171 | sylancl |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( ( x e. ( k (,) ( k + 1 ) ) |-> ( X - B ) ) ` x ) = ( X - B ) ) | 
						
							| 173 | 169 172 | eqtrd |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) = ( X - B ) ) | 
						
							| 174 | 173 | fveq2d |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) ) = ( abs ` ( X - B ) ) ) | 
						
							| 175 | 9 | anassrs |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( abs ` ( X - B ) ) <_ Y ) | 
						
							| 176 | 174 175 | eqbrtrd |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) ) <_ Y ) | 
						
							| 177 | 176 | ralrimiva |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( k (,) ( k + 1 ) ) ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) ) <_ Y ) | 
						
							| 178 |  | nfcv |  |-  F/_ x abs | 
						
							| 179 |  | nfcv |  |-  F/_ x RR | 
						
							| 180 |  | nfcv |  |-  F/_ x _D | 
						
							| 181 |  | nfmpt1 |  |-  F/_ x ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) | 
						
							| 182 | 179 180 181 | nfov |  |-  F/_ x ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) | 
						
							| 183 |  | nfcv |  |-  F/_ x y | 
						
							| 184 | 182 183 | nffv |  |-  F/_ x ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) | 
						
							| 185 | 178 184 | nffv |  |-  F/_ x ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) ) | 
						
							| 186 |  | nfcv |  |-  F/_ x <_ | 
						
							| 187 |  | nfcv |  |-  F/_ x Y | 
						
							| 188 | 185 186 187 | nfbr |  |-  F/ x ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) ) <_ Y | 
						
							| 189 |  | 2fveq3 |  |-  ( x = y -> ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) ) = ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) ) ) | 
						
							| 190 | 189 | breq1d |  |-  ( x = y -> ( ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) ) <_ Y <-> ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) ) <_ Y ) ) | 
						
							| 191 | 188 190 | rspc |  |-  ( y e. ( k (,) ( k + 1 ) ) -> ( A. x e. ( k (,) ( k + 1 ) ) ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` x ) ) <_ Y -> ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) ) <_ Y ) ) | 
						
							| 192 | 177 191 | mpan9 |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k (,) ( k + 1 ) ) ) -> ( abs ` ( ( RR _D ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ) ` y ) ) <_ Y ) | 
						
							| 193 | 70 73 111 167 8 192 | dvlip |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ ( ( k + 1 ) e. ( k [,] ( k + 1 ) ) /\ k e. ( k [,] ( k + 1 ) ) ) ) -> ( abs ` ( ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) - ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) ) ) <_ ( Y x. ( abs ` ( ( k + 1 ) - k ) ) ) ) | 
						
							| 194 | 193 | ex |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( ( k + 1 ) e. ( k [,] ( k + 1 ) ) /\ k e. ( k [,] ( k + 1 ) ) ) -> ( abs ` ( ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) - ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) ) ) <_ ( Y x. ( abs ` ( ( k + 1 ) - k ) ) ) ) ) | 
						
							| 195 | 77 79 194 | mp2and |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( abs ` ( ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) - ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) ) ) <_ ( Y x. ( abs ` ( ( k + 1 ) - k ) ) ) ) | 
						
							| 196 |  | ovex |  |-  ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) e. _V | 
						
							| 197 |  | nfcv |  |-  F/_ x ( k + 1 ) | 
						
							| 198 |  | nfcv |  |-  F/_ x ( X x. ( k + 1 ) ) | 
						
							| 199 |  | nfcv |  |-  F/_ x - | 
						
							| 200 |  | nfcsb1v |  |-  F/_ x [_ ( k + 1 ) / x ]_ A | 
						
							| 201 | 198 199 200 | nfov |  |-  F/_ x ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) | 
						
							| 202 |  | oveq2 |  |-  ( x = ( k + 1 ) -> ( X x. x ) = ( X x. ( k + 1 ) ) ) | 
						
							| 203 |  | csbeq1a |  |-  ( x = ( k + 1 ) -> A = [_ ( k + 1 ) / x ]_ A ) | 
						
							| 204 | 202 203 | oveq12d |  |-  ( x = ( k + 1 ) -> ( ( X x. x ) - A ) = ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) ) | 
						
							| 205 |  | eqid |  |-  ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) = ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) | 
						
							| 206 | 197 201 204 205 | fvmptf |  |-  ( ( ( k + 1 ) e. ( k [,] ( k + 1 ) ) /\ ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) e. _V ) -> ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) = ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) ) | 
						
							| 207 | 77 196 206 | sylancl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) = ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) ) | 
						
							| 208 | 70 | recnd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> k e. CC ) | 
						
							| 209 | 7 208 | mulcld |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. k ) e. CC ) | 
						
							| 210 | 209 43 | subcld |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( X x. k ) - [_ k / x ]_ A ) e. CC ) | 
						
							| 211 |  | nfcv |  |-  F/_ x k | 
						
							| 212 |  | nfcv |  |-  F/_ x ( X x. k ) | 
						
							| 213 |  | nfcsb1v |  |-  F/_ x [_ k / x ]_ A | 
						
							| 214 | 212 199 213 | nfov |  |-  F/_ x ( ( X x. k ) - [_ k / x ]_ A ) | 
						
							| 215 |  | oveq2 |  |-  ( x = k -> ( X x. x ) = ( X x. k ) ) | 
						
							| 216 |  | csbeq1a |  |-  ( x = k -> A = [_ k / x ]_ A ) | 
						
							| 217 | 215 216 | oveq12d |  |-  ( x = k -> ( ( X x. x ) - A ) = ( ( X x. k ) - [_ k / x ]_ A ) ) | 
						
							| 218 | 211 214 217 205 | fvmptf |  |-  ( ( k e. ( k [,] ( k + 1 ) ) /\ ( ( X x. k ) - [_ k / x ]_ A ) e. CC ) -> ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) = ( ( X x. k ) - [_ k / x ]_ A ) ) | 
						
							| 219 | 79 210 218 | syl2anc |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) = ( ( X x. k ) - [_ k / x ]_ A ) ) | 
						
							| 220 | 207 219 | oveq12d |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) - ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) ) = ( ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) - ( ( X x. k ) - [_ k / x ]_ A ) ) ) | 
						
							| 221 |  | peano2cn |  |-  ( k e. CC -> ( k + 1 ) e. CC ) | 
						
							| 222 | 208 221 | syl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. CC ) | 
						
							| 223 | 7 222 | mulcld |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. ( k + 1 ) ) e. CC ) | 
						
							| 224 | 223 209 38 43 | sub4d |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( ( X x. ( k + 1 ) ) - ( X x. k ) ) - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) = ( ( ( X x. ( k + 1 ) ) - [_ ( k + 1 ) / x ]_ A ) - ( ( X x. k ) - [_ k / x ]_ A ) ) ) | 
						
							| 225 |  | 1cnd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> 1 e. CC ) | 
						
							| 226 | 208 225 | pncan2d |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( k + 1 ) - k ) = 1 ) | 
						
							| 227 | 226 | oveq2d |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. ( ( k + 1 ) - k ) ) = ( X x. 1 ) ) | 
						
							| 228 | 7 222 208 | subdid |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. ( ( k + 1 ) - k ) ) = ( ( X x. ( k + 1 ) ) - ( X x. k ) ) ) | 
						
							| 229 | 227 228 146 | 3eqtr3d |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( X x. ( k + 1 ) ) - ( X x. k ) ) = X ) | 
						
							| 230 | 229 | oveq1d |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( ( X x. ( k + 1 ) ) - ( X x. k ) ) - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) = ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) | 
						
							| 231 | 220 224 230 | 3eqtr2rd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) = ( ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) - ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) ) ) | 
						
							| 232 | 231 | fveq2d |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( abs ` ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) = ( abs ` ( ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` ( k + 1 ) ) - ( ( x e. ( k [,] ( k + 1 ) ) |-> ( ( X x. x ) - A ) ) ` k ) ) ) ) | 
						
							| 233 | 226 | fveq2d |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( abs ` ( ( k + 1 ) - k ) ) = ( abs ` 1 ) ) | 
						
							| 234 |  | abs1 |  |-  ( abs ` 1 ) = 1 | 
						
							| 235 | 233 234 | eqtrdi |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( abs ` ( ( k + 1 ) - k ) ) = 1 ) | 
						
							| 236 | 235 | oveq2d |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( Y x. ( abs ` ( ( k + 1 ) - k ) ) ) = ( Y x. 1 ) ) | 
						
							| 237 | 8 | recnd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> Y e. CC ) | 
						
							| 238 | 237 | mulridd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( Y x. 1 ) = Y ) | 
						
							| 239 | 236 238 | eqtr2d |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> Y = ( Y x. ( abs ` ( ( k + 1 ) - k ) ) ) ) | 
						
							| 240 | 195 232 239 | 3brtr4d |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( abs ` ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) <_ Y ) | 
						
							| 241 | 11 64 8 240 | fsumle |  |-  ( ph -> sum_ k e. ( M ..^ N ) ( abs ` ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) <_ sum_ k e. ( M ..^ N ) Y ) | 
						
							| 242 | 63 65 66 67 241 | letrd |  |-  ( ph -> ( abs ` sum_ k e. ( M ..^ N ) ( X - ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) ) <_ sum_ k e. ( M ..^ N ) Y ) | 
						
							| 243 | 60 242 | eqbrtrrd |  |-  ( ph -> ( abs ` ( sum_ k e. ( M ..^ N ) X - ( D - C ) ) ) <_ sum_ k e. ( M ..^ N ) Y ) |