| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvfsumleOLD.m |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 2 |
|
dvfsumleOLD.a |
|- ( ph -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) ) |
| 3 |
|
dvfsumleOLD.v |
|- ( ( ph /\ x e. ( M (,) N ) ) -> B e. V ) |
| 4 |
|
dvfsumleOLD.b |
|- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) |
| 5 |
|
dvfsumleOLD.c |
|- ( x = M -> A = C ) |
| 6 |
|
dvfsumleOLD.d |
|- ( x = N -> A = D ) |
| 7 |
|
dvfsumleOLD.x |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> X e. RR ) |
| 8 |
|
dvfsumge.l |
|- ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> B <_ X ) |
| 9 |
|
df-neg |
|- -u A = ( 0 - A ) |
| 10 |
9
|
mpteq2i |
|- ( x e. ( M [,] N ) |-> -u A ) = ( x e. ( M [,] N ) |-> ( 0 - A ) ) |
| 11 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 12 |
11
|
subcn |
|- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 13 |
|
0red |
|- ( ph -> 0 e. RR ) |
| 14 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 15 |
1 14
|
syl |
|- ( ph -> M e. ZZ ) |
| 16 |
15
|
zred |
|- ( ph -> M e. RR ) |
| 17 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
| 18 |
1 17
|
syl |
|- ( ph -> N e. ZZ ) |
| 19 |
18
|
zred |
|- ( ph -> N e. RR ) |
| 20 |
|
iccssre |
|- ( ( M e. RR /\ N e. RR ) -> ( M [,] N ) C_ RR ) |
| 21 |
16 19 20
|
syl2anc |
|- ( ph -> ( M [,] N ) C_ RR ) |
| 22 |
|
ax-resscn |
|- RR C_ CC |
| 23 |
21 22
|
sstrdi |
|- ( ph -> ( M [,] N ) C_ CC ) |
| 24 |
22
|
a1i |
|- ( ph -> RR C_ CC ) |
| 25 |
|
cncfmptc |
|- ( ( 0 e. RR /\ ( M [,] N ) C_ CC /\ RR C_ CC ) -> ( x e. ( M [,] N ) |-> 0 ) e. ( ( M [,] N ) -cn-> RR ) ) |
| 26 |
13 23 24 25
|
syl3anc |
|- ( ph -> ( x e. ( M [,] N ) |-> 0 ) e. ( ( M [,] N ) -cn-> RR ) ) |
| 27 |
|
resubcl |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 - A ) e. RR ) |
| 28 |
11 12 26 2 22 27
|
cncfmpt2ss |
|- ( ph -> ( x e. ( M [,] N ) |-> ( 0 - A ) ) e. ( ( M [,] N ) -cn-> RR ) ) |
| 29 |
10 28
|
eqeltrid |
|- ( ph -> ( x e. ( M [,] N ) |-> -u A ) e. ( ( M [,] N ) -cn-> RR ) ) |
| 30 |
|
negex |
|- -u B e. _V |
| 31 |
30
|
a1i |
|- ( ( ph /\ x e. ( M (,) N ) ) -> -u B e. _V ) |
| 32 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 33 |
32
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
| 34 |
|
ioossicc |
|- ( M (,) N ) C_ ( M [,] N ) |
| 35 |
34
|
sseli |
|- ( x e. ( M (,) N ) -> x e. ( M [,] N ) ) |
| 36 |
|
cncff |
|- ( ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
| 37 |
2 36
|
syl |
|- ( ph -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
| 38 |
37
|
fvmptelcdm |
|- ( ( ph /\ x e. ( M [,] N ) ) -> A e. RR ) |
| 39 |
35 38
|
sylan2 |
|- ( ( ph /\ x e. ( M (,) N ) ) -> A e. RR ) |
| 40 |
39
|
recnd |
|- ( ( ph /\ x e. ( M (,) N ) ) -> A e. CC ) |
| 41 |
33 40 3 4
|
dvmptneg |
|- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> -u A ) ) = ( x e. ( M (,) N ) |-> -u B ) ) |
| 42 |
5
|
negeqd |
|- ( x = M -> -u A = -u C ) |
| 43 |
6
|
negeqd |
|- ( x = N -> -u A = -u D ) |
| 44 |
7
|
renegcld |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> -u X e. RR ) |
| 45 |
16
|
adantr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> M e. RR ) |
| 46 |
45
|
rexrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> M e. RR* ) |
| 47 |
|
elfzole1 |
|- ( k e. ( M ..^ N ) -> M <_ k ) |
| 48 |
47
|
adantl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> M <_ k ) |
| 49 |
|
iooss1 |
|- ( ( M e. RR* /\ M <_ k ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) ( k + 1 ) ) ) |
| 50 |
46 48 49
|
syl2anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) ( k + 1 ) ) ) |
| 51 |
19
|
adantr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> N e. RR ) |
| 52 |
51
|
rexrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> N e. RR* ) |
| 53 |
|
fzofzp1 |
|- ( k e. ( M ..^ N ) -> ( k + 1 ) e. ( M ... N ) ) |
| 54 |
53
|
adantl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. ( M ... N ) ) |
| 55 |
|
elfzle2 |
|- ( ( k + 1 ) e. ( M ... N ) -> ( k + 1 ) <_ N ) |
| 56 |
54 55
|
syl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) <_ N ) |
| 57 |
|
iooss2 |
|- ( ( N e. RR* /\ ( k + 1 ) <_ N ) -> ( M (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
| 58 |
52 56 57
|
syl2anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
| 59 |
50 58
|
sstrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
| 60 |
59
|
sselda |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> x e. ( M (,) N ) ) |
| 61 |
38
|
adantlr |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> A e. RR ) |
| 62 |
35 61
|
sylan2 |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> A e. RR ) |
| 63 |
62
|
fmpttd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M (,) N ) |-> A ) : ( M (,) N ) --> RR ) |
| 64 |
|
ioossre |
|- ( M (,) N ) C_ RR |
| 65 |
|
dvfre |
|- ( ( ( x e. ( M (,) N ) |-> A ) : ( M (,) N ) --> RR /\ ( M (,) N ) C_ RR ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR ) |
| 66 |
63 64 65
|
sylancl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR ) |
| 67 |
4
|
adantr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) |
| 68 |
67
|
dmeqd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) = dom ( x e. ( M (,) N ) |-> B ) ) |
| 69 |
3
|
adantlr |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> B e. V ) |
| 70 |
69
|
ralrimiva |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( M (,) N ) B e. V ) |
| 71 |
|
dmmptg |
|- ( A. x e. ( M (,) N ) B e. V -> dom ( x e. ( M (,) N ) |-> B ) = ( M (,) N ) ) |
| 72 |
70 71
|
syl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( x e. ( M (,) N ) |-> B ) = ( M (,) N ) ) |
| 73 |
68 72
|
eqtrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( M (,) N ) ) |
| 74 |
67 73
|
feq12d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR <-> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) ) |
| 75 |
66 74
|
mpbid |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) |
| 76 |
75
|
fvmptelcdm |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> B e. RR ) |
| 77 |
60 76
|
syldan |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> B e. RR ) |
| 78 |
77
|
anasss |
|- ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> B e. RR ) |
| 79 |
7
|
adantrr |
|- ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> X e. RR ) |
| 80 |
78 79
|
lenegd |
|- ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> ( B <_ X <-> -u X <_ -u B ) ) |
| 81 |
8 80
|
mpbid |
|- ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> -u X <_ -u B ) |
| 82 |
1 29 31 41 42 43 44 81
|
dvfsumle |
|- ( ph -> sum_ k e. ( M ..^ N ) -u X <_ ( -u D - -u C ) ) |
| 83 |
|
fzofi |
|- ( M ..^ N ) e. Fin |
| 84 |
83
|
a1i |
|- ( ph -> ( M ..^ N ) e. Fin ) |
| 85 |
7
|
recnd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> X e. CC ) |
| 86 |
84 85
|
fsumneg |
|- ( ph -> sum_ k e. ( M ..^ N ) -u X = -u sum_ k e. ( M ..^ N ) X ) |
| 87 |
6
|
eleq1d |
|- ( x = N -> ( A e. RR <-> D e. RR ) ) |
| 88 |
|
eqid |
|- ( x e. ( M [,] N ) |-> A ) = ( x e. ( M [,] N ) |-> A ) |
| 89 |
88
|
fmpt |
|- ( A. x e. ( M [,] N ) A e. RR <-> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
| 90 |
37 89
|
sylibr |
|- ( ph -> A. x e. ( M [,] N ) A e. RR ) |
| 91 |
16
|
rexrd |
|- ( ph -> M e. RR* ) |
| 92 |
19
|
rexrd |
|- ( ph -> N e. RR* ) |
| 93 |
|
eluzle |
|- ( N e. ( ZZ>= ` M ) -> M <_ N ) |
| 94 |
1 93
|
syl |
|- ( ph -> M <_ N ) |
| 95 |
|
ubicc2 |
|- ( ( M e. RR* /\ N e. RR* /\ M <_ N ) -> N e. ( M [,] N ) ) |
| 96 |
91 92 94 95
|
syl3anc |
|- ( ph -> N e. ( M [,] N ) ) |
| 97 |
87 90 96
|
rspcdva |
|- ( ph -> D e. RR ) |
| 98 |
97
|
recnd |
|- ( ph -> D e. CC ) |
| 99 |
5
|
eleq1d |
|- ( x = M -> ( A e. RR <-> C e. RR ) ) |
| 100 |
|
lbicc2 |
|- ( ( M e. RR* /\ N e. RR* /\ M <_ N ) -> M e. ( M [,] N ) ) |
| 101 |
91 92 94 100
|
syl3anc |
|- ( ph -> M e. ( M [,] N ) ) |
| 102 |
99 90 101
|
rspcdva |
|- ( ph -> C e. RR ) |
| 103 |
102
|
recnd |
|- ( ph -> C e. CC ) |
| 104 |
98 103
|
neg2subd |
|- ( ph -> ( -u D - -u C ) = ( C - D ) ) |
| 105 |
98 103
|
negsubdi2d |
|- ( ph -> -u ( D - C ) = ( C - D ) ) |
| 106 |
104 105
|
eqtr4d |
|- ( ph -> ( -u D - -u C ) = -u ( D - C ) ) |
| 107 |
82 86 106
|
3brtr3d |
|- ( ph -> -u sum_ k e. ( M ..^ N ) X <_ -u ( D - C ) ) |
| 108 |
97 102
|
resubcld |
|- ( ph -> ( D - C ) e. RR ) |
| 109 |
84 7
|
fsumrecl |
|- ( ph -> sum_ k e. ( M ..^ N ) X e. RR ) |
| 110 |
108 109
|
lenegd |
|- ( ph -> ( ( D - C ) <_ sum_ k e. ( M ..^ N ) X <-> -u sum_ k e. ( M ..^ N ) X <_ -u ( D - C ) ) ) |
| 111 |
107 110
|
mpbird |
|- ( ph -> ( D - C ) <_ sum_ k e. ( M ..^ N ) X ) |