| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvfsumleOLD.m |  |-  ( ph -> N e. ( ZZ>= ` M ) ) | 
						
							| 2 |  | dvfsumleOLD.a |  |-  ( ph -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) ) | 
						
							| 3 |  | dvfsumleOLD.v |  |-  ( ( ph /\ x e. ( M (,) N ) ) -> B e. V ) | 
						
							| 4 |  | dvfsumleOLD.b |  |-  ( ph -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) | 
						
							| 5 |  | dvfsumleOLD.c |  |-  ( x = M -> A = C ) | 
						
							| 6 |  | dvfsumleOLD.d |  |-  ( x = N -> A = D ) | 
						
							| 7 |  | dvfsumleOLD.x |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> X e. RR ) | 
						
							| 8 |  | dvfsumge.l |  |-  ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> B <_ X ) | 
						
							| 9 |  | df-neg |  |-  -u A = ( 0 - A ) | 
						
							| 10 | 9 | mpteq2i |  |-  ( x e. ( M [,] N ) |-> -u A ) = ( x e. ( M [,] N ) |-> ( 0 - A ) ) | 
						
							| 11 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 12 | 11 | subcn |  |-  - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
						
							| 13 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 14 |  | eluzel2 |  |-  ( N e. ( ZZ>= ` M ) -> M e. ZZ ) | 
						
							| 15 | 1 14 | syl |  |-  ( ph -> M e. ZZ ) | 
						
							| 16 | 15 | zred |  |-  ( ph -> M e. RR ) | 
						
							| 17 |  | eluzelz |  |-  ( N e. ( ZZ>= ` M ) -> N e. ZZ ) | 
						
							| 18 | 1 17 | syl |  |-  ( ph -> N e. ZZ ) | 
						
							| 19 | 18 | zred |  |-  ( ph -> N e. RR ) | 
						
							| 20 |  | iccssre |  |-  ( ( M e. RR /\ N e. RR ) -> ( M [,] N ) C_ RR ) | 
						
							| 21 | 16 19 20 | syl2anc |  |-  ( ph -> ( M [,] N ) C_ RR ) | 
						
							| 22 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 23 | 21 22 | sstrdi |  |-  ( ph -> ( M [,] N ) C_ CC ) | 
						
							| 24 | 22 | a1i |  |-  ( ph -> RR C_ CC ) | 
						
							| 25 |  | cncfmptc |  |-  ( ( 0 e. RR /\ ( M [,] N ) C_ CC /\ RR C_ CC ) -> ( x e. ( M [,] N ) |-> 0 ) e. ( ( M [,] N ) -cn-> RR ) ) | 
						
							| 26 | 13 23 24 25 | syl3anc |  |-  ( ph -> ( x e. ( M [,] N ) |-> 0 ) e. ( ( M [,] N ) -cn-> RR ) ) | 
						
							| 27 |  | resubcl |  |-  ( ( 0 e. RR /\ A e. RR ) -> ( 0 - A ) e. RR ) | 
						
							| 28 | 11 12 26 2 22 27 | cncfmpt2ss |  |-  ( ph -> ( x e. ( M [,] N ) |-> ( 0 - A ) ) e. ( ( M [,] N ) -cn-> RR ) ) | 
						
							| 29 | 10 28 | eqeltrid |  |-  ( ph -> ( x e. ( M [,] N ) |-> -u A ) e. ( ( M [,] N ) -cn-> RR ) ) | 
						
							| 30 |  | negex |  |-  -u B e. _V | 
						
							| 31 | 30 | a1i |  |-  ( ( ph /\ x e. ( M (,) N ) ) -> -u B e. _V ) | 
						
							| 32 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 33 | 32 | a1i |  |-  ( ph -> RR e. { RR , CC } ) | 
						
							| 34 |  | ioossicc |  |-  ( M (,) N ) C_ ( M [,] N ) | 
						
							| 35 | 34 | sseli |  |-  ( x e. ( M (,) N ) -> x e. ( M [,] N ) ) | 
						
							| 36 |  | cncff |  |-  ( ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) | 
						
							| 37 | 2 36 | syl |  |-  ( ph -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) | 
						
							| 38 | 37 | fvmptelcdm |  |-  ( ( ph /\ x e. ( M [,] N ) ) -> A e. RR ) | 
						
							| 39 | 35 38 | sylan2 |  |-  ( ( ph /\ x e. ( M (,) N ) ) -> A e. RR ) | 
						
							| 40 | 39 | recnd |  |-  ( ( ph /\ x e. ( M (,) N ) ) -> A e. CC ) | 
						
							| 41 | 33 40 3 4 | dvmptneg |  |-  ( ph -> ( RR _D ( x e. ( M (,) N ) |-> -u A ) ) = ( x e. ( M (,) N ) |-> -u B ) ) | 
						
							| 42 | 5 | negeqd |  |-  ( x = M -> -u A = -u C ) | 
						
							| 43 | 6 | negeqd |  |-  ( x = N -> -u A = -u D ) | 
						
							| 44 | 7 | renegcld |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> -u X e. RR ) | 
						
							| 45 | 16 | adantr |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> M e. RR ) | 
						
							| 46 | 45 | rexrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> M e. RR* ) | 
						
							| 47 |  | elfzole1 |  |-  ( k e. ( M ..^ N ) -> M <_ k ) | 
						
							| 48 | 47 | adantl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> M <_ k ) | 
						
							| 49 |  | iooss1 |  |-  ( ( M e. RR* /\ M <_ k ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) ( k + 1 ) ) ) | 
						
							| 50 | 46 48 49 | syl2anc |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) ( k + 1 ) ) ) | 
						
							| 51 | 19 | adantr |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> N e. RR ) | 
						
							| 52 | 51 | rexrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> N e. RR* ) | 
						
							| 53 |  | fzofzp1 |  |-  ( k e. ( M ..^ N ) -> ( k + 1 ) e. ( M ... N ) ) | 
						
							| 54 | 53 | adantl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. ( M ... N ) ) | 
						
							| 55 |  | elfzle2 |  |-  ( ( k + 1 ) e. ( M ... N ) -> ( k + 1 ) <_ N ) | 
						
							| 56 | 54 55 | syl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) <_ N ) | 
						
							| 57 |  | iooss2 |  |-  ( ( N e. RR* /\ ( k + 1 ) <_ N ) -> ( M (,) ( k + 1 ) ) C_ ( M (,) N ) ) | 
						
							| 58 | 52 56 57 | syl2anc |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) ( k + 1 ) ) C_ ( M (,) N ) ) | 
						
							| 59 | 50 58 | sstrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) N ) ) | 
						
							| 60 | 59 | sselda |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> x e. ( M (,) N ) ) | 
						
							| 61 | 38 | adantlr |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> A e. RR ) | 
						
							| 62 | 35 61 | sylan2 |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> A e. RR ) | 
						
							| 63 | 62 | fmpttd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M (,) N ) |-> A ) : ( M (,) N ) --> RR ) | 
						
							| 64 |  | ioossre |  |-  ( M (,) N ) C_ RR | 
						
							| 65 |  | dvfre |  |-  ( ( ( x e. ( M (,) N ) |-> A ) : ( M (,) N ) --> RR /\ ( M (,) N ) C_ RR ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR ) | 
						
							| 66 | 63 64 65 | sylancl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR ) | 
						
							| 67 | 4 | adantr |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) | 
						
							| 68 | 67 | dmeqd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) = dom ( x e. ( M (,) N ) |-> B ) ) | 
						
							| 69 | 3 | adantlr |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> B e. V ) | 
						
							| 70 | 69 | ralrimiva |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( M (,) N ) B e. V ) | 
						
							| 71 |  | dmmptg |  |-  ( A. x e. ( M (,) N ) B e. V -> dom ( x e. ( M (,) N ) |-> B ) = ( M (,) N ) ) | 
						
							| 72 | 70 71 | syl |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( x e. ( M (,) N ) |-> B ) = ( M (,) N ) ) | 
						
							| 73 | 68 72 | eqtrd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( M (,) N ) ) | 
						
							| 74 | 67 73 | feq12d |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR <-> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) ) | 
						
							| 75 | 66 74 | mpbid |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) | 
						
							| 76 | 75 | fvmptelcdm |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> B e. RR ) | 
						
							| 77 | 60 76 | syldan |  |-  ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> B e. RR ) | 
						
							| 78 | 77 | anasss |  |-  ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> B e. RR ) | 
						
							| 79 | 7 | adantrr |  |-  ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> X e. RR ) | 
						
							| 80 | 78 79 | lenegd |  |-  ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> ( B <_ X <-> -u X <_ -u B ) ) | 
						
							| 81 | 8 80 | mpbid |  |-  ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> -u X <_ -u B ) | 
						
							| 82 | 1 29 31 41 42 43 44 81 | dvfsumle |  |-  ( ph -> sum_ k e. ( M ..^ N ) -u X <_ ( -u D - -u C ) ) | 
						
							| 83 |  | fzofi |  |-  ( M ..^ N ) e. Fin | 
						
							| 84 | 83 | a1i |  |-  ( ph -> ( M ..^ N ) e. Fin ) | 
						
							| 85 | 7 | recnd |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> X e. CC ) | 
						
							| 86 | 84 85 | fsumneg |  |-  ( ph -> sum_ k e. ( M ..^ N ) -u X = -u sum_ k e. ( M ..^ N ) X ) | 
						
							| 87 | 6 | eleq1d |  |-  ( x = N -> ( A e. RR <-> D e. RR ) ) | 
						
							| 88 |  | eqid |  |-  ( x e. ( M [,] N ) |-> A ) = ( x e. ( M [,] N ) |-> A ) | 
						
							| 89 | 88 | fmpt |  |-  ( A. x e. ( M [,] N ) A e. RR <-> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) | 
						
							| 90 | 37 89 | sylibr |  |-  ( ph -> A. x e. ( M [,] N ) A e. RR ) | 
						
							| 91 | 16 | rexrd |  |-  ( ph -> M e. RR* ) | 
						
							| 92 | 19 | rexrd |  |-  ( ph -> N e. RR* ) | 
						
							| 93 |  | eluzle |  |-  ( N e. ( ZZ>= ` M ) -> M <_ N ) | 
						
							| 94 | 1 93 | syl |  |-  ( ph -> M <_ N ) | 
						
							| 95 |  | ubicc2 |  |-  ( ( M e. RR* /\ N e. RR* /\ M <_ N ) -> N e. ( M [,] N ) ) | 
						
							| 96 | 91 92 94 95 | syl3anc |  |-  ( ph -> N e. ( M [,] N ) ) | 
						
							| 97 | 87 90 96 | rspcdva |  |-  ( ph -> D e. RR ) | 
						
							| 98 | 97 | recnd |  |-  ( ph -> D e. CC ) | 
						
							| 99 | 5 | eleq1d |  |-  ( x = M -> ( A e. RR <-> C e. RR ) ) | 
						
							| 100 |  | lbicc2 |  |-  ( ( M e. RR* /\ N e. RR* /\ M <_ N ) -> M e. ( M [,] N ) ) | 
						
							| 101 | 91 92 94 100 | syl3anc |  |-  ( ph -> M e. ( M [,] N ) ) | 
						
							| 102 | 99 90 101 | rspcdva |  |-  ( ph -> C e. RR ) | 
						
							| 103 | 102 | recnd |  |-  ( ph -> C e. CC ) | 
						
							| 104 | 98 103 | neg2subd |  |-  ( ph -> ( -u D - -u C ) = ( C - D ) ) | 
						
							| 105 | 98 103 | negsubdi2d |  |-  ( ph -> -u ( D - C ) = ( C - D ) ) | 
						
							| 106 | 104 105 | eqtr4d |  |-  ( ph -> ( -u D - -u C ) = -u ( D - C ) ) | 
						
							| 107 | 82 86 106 | 3brtr3d |  |-  ( ph -> -u sum_ k e. ( M ..^ N ) X <_ -u ( D - C ) ) | 
						
							| 108 | 97 102 | resubcld |  |-  ( ph -> ( D - C ) e. RR ) | 
						
							| 109 | 84 7 | fsumrecl |  |-  ( ph -> sum_ k e. ( M ..^ N ) X e. RR ) | 
						
							| 110 | 108 109 | lenegd |  |-  ( ph -> ( ( D - C ) <_ sum_ k e. ( M ..^ N ) X <-> -u sum_ k e. ( M ..^ N ) X <_ -u ( D - C ) ) ) | 
						
							| 111 | 107 110 | mpbird |  |-  ( ph -> ( D - C ) <_ sum_ k e. ( M ..^ N ) X ) |