| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvfsumleOLD.m |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 2 |
|
dvfsumleOLD.a |
|- ( ph -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) ) |
| 3 |
|
dvfsumleOLD.v |
|- ( ( ph /\ x e. ( M (,) N ) ) -> B e. V ) |
| 4 |
|
dvfsumleOLD.b |
|- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) |
| 5 |
|
dvfsumleOLD.c |
|- ( x = M -> A = C ) |
| 6 |
|
dvfsumleOLD.d |
|- ( x = N -> A = D ) |
| 7 |
|
dvfsumleOLD.x |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> X e. RR ) |
| 8 |
|
dvfsumleOLD.l |
|- ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> X <_ B ) |
| 9 |
|
fzofi |
|- ( M ..^ N ) e. Fin |
| 10 |
9
|
a1i |
|- ( ph -> ( M ..^ N ) e. Fin ) |
| 11 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 12 |
1 11
|
syl |
|- ( ph -> M e. ZZ ) |
| 13 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
| 14 |
1 13
|
syl |
|- ( ph -> N e. ZZ ) |
| 15 |
|
fzval2 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M ... N ) = ( ( M [,] N ) i^i ZZ ) ) |
| 16 |
12 14 15
|
syl2anc |
|- ( ph -> ( M ... N ) = ( ( M [,] N ) i^i ZZ ) ) |
| 17 |
|
inss1 |
|- ( ( M [,] N ) i^i ZZ ) C_ ( M [,] N ) |
| 18 |
16 17
|
eqsstrdi |
|- ( ph -> ( M ... N ) C_ ( M [,] N ) ) |
| 19 |
18
|
sselda |
|- ( ( ph /\ y e. ( M ... N ) ) -> y e. ( M [,] N ) ) |
| 20 |
|
cncff |
|- ( ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
| 21 |
2 20
|
syl |
|- ( ph -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
| 22 |
|
eqid |
|- ( x e. ( M [,] N ) |-> A ) = ( x e. ( M [,] N ) |-> A ) |
| 23 |
22
|
fmpt |
|- ( A. x e. ( M [,] N ) A e. RR <-> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
| 24 |
21 23
|
sylibr |
|- ( ph -> A. x e. ( M [,] N ) A e. RR ) |
| 25 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ A |
| 26 |
25
|
nfel1 |
|- F/ x [_ y / x ]_ A e. RR |
| 27 |
|
csbeq1a |
|- ( x = y -> A = [_ y / x ]_ A ) |
| 28 |
27
|
eleq1d |
|- ( x = y -> ( A e. RR <-> [_ y / x ]_ A e. RR ) ) |
| 29 |
26 28
|
rspc |
|- ( y e. ( M [,] N ) -> ( A. x e. ( M [,] N ) A e. RR -> [_ y / x ]_ A e. RR ) ) |
| 30 |
24 29
|
mpan9 |
|- ( ( ph /\ y e. ( M [,] N ) ) -> [_ y / x ]_ A e. RR ) |
| 31 |
19 30
|
syldan |
|- ( ( ph /\ y e. ( M ... N ) ) -> [_ y / x ]_ A e. RR ) |
| 32 |
31
|
ralrimiva |
|- ( ph -> A. y e. ( M ... N ) [_ y / x ]_ A e. RR ) |
| 33 |
|
fzofzp1 |
|- ( k e. ( M ..^ N ) -> ( k + 1 ) e. ( M ... N ) ) |
| 34 |
|
csbeq1 |
|- ( y = ( k + 1 ) -> [_ y / x ]_ A = [_ ( k + 1 ) / x ]_ A ) |
| 35 |
34
|
eleq1d |
|- ( y = ( k + 1 ) -> ( [_ y / x ]_ A e. RR <-> [_ ( k + 1 ) / x ]_ A e. RR ) ) |
| 36 |
35
|
rspccva |
|- ( ( A. y e. ( M ... N ) [_ y / x ]_ A e. RR /\ ( k + 1 ) e. ( M ... N ) ) -> [_ ( k + 1 ) / x ]_ A e. RR ) |
| 37 |
32 33 36
|
syl2an |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> [_ ( k + 1 ) / x ]_ A e. RR ) |
| 38 |
|
elfzofz |
|- ( k e. ( M ..^ N ) -> k e. ( M ... N ) ) |
| 39 |
|
csbeq1 |
|- ( y = k -> [_ y / x ]_ A = [_ k / x ]_ A ) |
| 40 |
39
|
eleq1d |
|- ( y = k -> ( [_ y / x ]_ A e. RR <-> [_ k / x ]_ A e. RR ) ) |
| 41 |
40
|
rspccva |
|- ( ( A. y e. ( M ... N ) [_ y / x ]_ A e. RR /\ k e. ( M ... N ) ) -> [_ k / x ]_ A e. RR ) |
| 42 |
32 38 41
|
syl2an |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> [_ k / x ]_ A e. RR ) |
| 43 |
37 42
|
resubcld |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) e. RR ) |
| 44 |
|
elfzoelz |
|- ( k e. ( M ..^ N ) -> k e. ZZ ) |
| 45 |
44
|
adantl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. ZZ ) |
| 46 |
45
|
zred |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. RR ) |
| 47 |
46
|
recnd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. CC ) |
| 48 |
|
ax-1cn |
|- 1 e. CC |
| 49 |
|
pncan2 |
|- ( ( k e. CC /\ 1 e. CC ) -> ( ( k + 1 ) - k ) = 1 ) |
| 50 |
47 48 49
|
sylancl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( k + 1 ) - k ) = 1 ) |
| 51 |
50
|
oveq2d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. ( ( k + 1 ) - k ) ) = ( X x. 1 ) ) |
| 52 |
7
|
recnd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> X e. CC ) |
| 53 |
|
peano2re |
|- ( k e. RR -> ( k + 1 ) e. RR ) |
| 54 |
46 53
|
syl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. RR ) |
| 55 |
54
|
recnd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. CC ) |
| 56 |
52 55 47
|
subdid |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. ( ( k + 1 ) - k ) ) = ( ( X x. ( k + 1 ) ) - ( X x. k ) ) ) |
| 57 |
52
|
mulridd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. 1 ) = X ) |
| 58 |
51 56 57
|
3eqtr3d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( X x. ( k + 1 ) ) - ( X x. k ) ) = X ) |
| 59 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 60 |
59
|
mulcn |
|- x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 61 |
12
|
zred |
|- ( ph -> M e. RR ) |
| 62 |
61
|
adantr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> M e. RR ) |
| 63 |
14
|
zred |
|- ( ph -> N e. RR ) |
| 64 |
63
|
adantr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> N e. RR ) |
| 65 |
|
elfzole1 |
|- ( k e. ( M ..^ N ) -> M <_ k ) |
| 66 |
65
|
adantl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> M <_ k ) |
| 67 |
33
|
adantl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. ( M ... N ) ) |
| 68 |
|
elfzle2 |
|- ( ( k + 1 ) e. ( M ... N ) -> ( k + 1 ) <_ N ) |
| 69 |
67 68
|
syl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) <_ N ) |
| 70 |
|
iccss |
|- ( ( ( M e. RR /\ N e. RR ) /\ ( M <_ k /\ ( k + 1 ) <_ N ) ) -> ( k [,] ( k + 1 ) ) C_ ( M [,] N ) ) |
| 71 |
62 64 66 69 70
|
syl22anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k [,] ( k + 1 ) ) C_ ( M [,] N ) ) |
| 72 |
|
iccssre |
|- ( ( M e. RR /\ N e. RR ) -> ( M [,] N ) C_ RR ) |
| 73 |
61 63 72
|
syl2anc |
|- ( ph -> ( M [,] N ) C_ RR ) |
| 74 |
73
|
adantr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M [,] N ) C_ RR ) |
| 75 |
71 74
|
sstrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k [,] ( k + 1 ) ) C_ RR ) |
| 76 |
|
ax-resscn |
|- RR C_ CC |
| 77 |
75 76
|
sstrdi |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k [,] ( k + 1 ) ) C_ CC ) |
| 78 |
76
|
a1i |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> RR C_ CC ) |
| 79 |
|
cncfmptc |
|- ( ( X e. RR /\ ( k [,] ( k + 1 ) ) C_ CC /\ RR C_ CC ) -> ( y e. ( k [,] ( k + 1 ) ) |-> X ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
| 80 |
7 77 78 79
|
syl3anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k [,] ( k + 1 ) ) |-> X ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
| 81 |
|
cncfmptid |
|- ( ( ( k [,] ( k + 1 ) ) C_ RR /\ RR C_ CC ) -> ( y e. ( k [,] ( k + 1 ) ) |-> y ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
| 82 |
75 76 81
|
sylancl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k [,] ( k + 1 ) ) |-> y ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
| 83 |
|
remulcl |
|- ( ( X e. RR /\ y e. RR ) -> ( X x. y ) e. RR ) |
| 84 |
59 60 80 82 76 83
|
cncfmpt2ss |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k [,] ( k + 1 ) ) |-> ( X x. y ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
| 85 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 86 |
85
|
a1i |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> RR e. { RR , CC } ) |
| 87 |
62
|
rexrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> M e. RR* ) |
| 88 |
|
iooss1 |
|- ( ( M e. RR* /\ M <_ k ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) ( k + 1 ) ) ) |
| 89 |
87 66 88
|
syl2anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) ( k + 1 ) ) ) |
| 90 |
64
|
rexrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> N e. RR* ) |
| 91 |
|
iooss2 |
|- ( ( N e. RR* /\ ( k + 1 ) <_ N ) -> ( M (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
| 92 |
90 69 91
|
syl2anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
| 93 |
89 92
|
sstrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
| 94 |
|
ioossicc |
|- ( M (,) N ) C_ ( M [,] N ) |
| 95 |
74 76
|
sstrdi |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M [,] N ) C_ CC ) |
| 96 |
94 95
|
sstrid |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) N ) C_ CC ) |
| 97 |
93 96
|
sstrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ CC ) |
| 98 |
97
|
sselda |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k (,) ( k + 1 ) ) ) -> y e. CC ) |
| 99 |
|
1cnd |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k (,) ( k + 1 ) ) ) -> 1 e. CC ) |
| 100 |
78
|
sselda |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. RR ) -> y e. CC ) |
| 101 |
|
1cnd |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. RR ) -> 1 e. CC ) |
| 102 |
86
|
dvmptid |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. RR |-> y ) ) = ( y e. RR |-> 1 ) ) |
| 103 |
|
ioossre |
|- ( k (,) ( k + 1 ) ) C_ RR |
| 104 |
103
|
a1i |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ RR ) |
| 105 |
59
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 106 |
|
iooretop |
|- ( k (,) ( k + 1 ) ) e. ( topGen ` ran (,) ) |
| 107 |
106
|
a1i |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) e. ( topGen ` ran (,) ) ) |
| 108 |
86 100 101 102 104 105 59 107
|
dvmptres |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. ( k (,) ( k + 1 ) ) |-> y ) ) = ( y e. ( k (,) ( k + 1 ) ) |-> 1 ) ) |
| 109 |
86 98 99 108 52
|
dvmptcmul |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. ( k (,) ( k + 1 ) ) |-> ( X x. y ) ) ) = ( y e. ( k (,) ( k + 1 ) ) |-> ( X x. 1 ) ) ) |
| 110 |
57
|
mpteq2dv |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k (,) ( k + 1 ) ) |-> ( X x. 1 ) ) = ( y e. ( k (,) ( k + 1 ) ) |-> X ) ) |
| 111 |
109 110
|
eqtrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. ( k (,) ( k + 1 ) ) |-> ( X x. y ) ) ) = ( y e. ( k (,) ( k + 1 ) ) |-> X ) ) |
| 112 |
|
nfcv |
|- F/_ y A |
| 113 |
112 25 27
|
cbvmpt |
|- ( x e. ( k [,] ( k + 1 ) ) |-> A ) = ( y e. ( k [,] ( k + 1 ) ) |-> [_ y / x ]_ A ) |
| 114 |
71
|
resmptd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( x e. ( M [,] N ) |-> A ) |` ( k [,] ( k + 1 ) ) ) = ( x e. ( k [,] ( k + 1 ) ) |-> A ) ) |
| 115 |
2
|
adantr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) ) |
| 116 |
|
rescncf |
|- ( ( k [,] ( k + 1 ) ) C_ ( M [,] N ) -> ( ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) -> ( ( x e. ( M [,] N ) |-> A ) |` ( k [,] ( k + 1 ) ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) ) |
| 117 |
71 115 116
|
sylc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( x e. ( M [,] N ) |-> A ) |` ( k [,] ( k + 1 ) ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
| 118 |
114 117
|
eqeltrrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( k [,] ( k + 1 ) ) |-> A ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
| 119 |
113 118
|
eqeltrrid |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k [,] ( k + 1 ) ) |-> [_ y / x ]_ A ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
| 120 |
21
|
adantr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
| 121 |
120 23
|
sylibr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( M [,] N ) A e. RR ) |
| 122 |
94
|
sseli |
|- ( y e. ( M (,) N ) -> y e. ( M [,] N ) ) |
| 123 |
29
|
impcom |
|- ( ( A. x e. ( M [,] N ) A e. RR /\ y e. ( M [,] N ) ) -> [_ y / x ]_ A e. RR ) |
| 124 |
121 122 123
|
syl2an |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( M (,) N ) ) -> [_ y / x ]_ A e. RR ) |
| 125 |
124
|
recnd |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( M (,) N ) ) -> [_ y / x ]_ A e. CC ) |
| 126 |
94
|
sseli |
|- ( x e. ( M (,) N ) -> x e. ( M [,] N ) ) |
| 127 |
21
|
fvmptelcdm |
|- ( ( ph /\ x e. ( M [,] N ) ) -> A e. RR ) |
| 128 |
127
|
adantlr |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> A e. RR ) |
| 129 |
126 128
|
sylan2 |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> A e. RR ) |
| 130 |
129
|
fmpttd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M (,) N ) |-> A ) : ( M (,) N ) --> RR ) |
| 131 |
|
ioossre |
|- ( M (,) N ) C_ RR |
| 132 |
|
dvfre |
|- ( ( ( x e. ( M (,) N ) |-> A ) : ( M (,) N ) --> RR /\ ( M (,) N ) C_ RR ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR ) |
| 133 |
130 131 132
|
sylancl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR ) |
| 134 |
4
|
adantr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) |
| 135 |
134
|
dmeqd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) = dom ( x e. ( M (,) N ) |-> B ) ) |
| 136 |
3
|
adantlr |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> B e. V ) |
| 137 |
136
|
ralrimiva |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( M (,) N ) B e. V ) |
| 138 |
|
dmmptg |
|- ( A. x e. ( M (,) N ) B e. V -> dom ( x e. ( M (,) N ) |-> B ) = ( M (,) N ) ) |
| 139 |
137 138
|
syl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( x e. ( M (,) N ) |-> B ) = ( M (,) N ) ) |
| 140 |
135 139
|
eqtrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( M (,) N ) ) |
| 141 |
134 140
|
feq12d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR <-> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) ) |
| 142 |
133 141
|
mpbid |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) |
| 143 |
|
eqid |
|- ( x e. ( M (,) N ) |-> B ) = ( x e. ( M (,) N ) |-> B ) |
| 144 |
143
|
fmpt |
|- ( A. x e. ( M (,) N ) B e. RR <-> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) |
| 145 |
142 144
|
sylibr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( M (,) N ) B e. RR ) |
| 146 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ B |
| 147 |
146
|
nfel1 |
|- F/ x [_ y / x ]_ B e. RR |
| 148 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
| 149 |
148
|
eleq1d |
|- ( x = y -> ( B e. RR <-> [_ y / x ]_ B e. RR ) ) |
| 150 |
147 149
|
rspc |
|- ( y e. ( M (,) N ) -> ( A. x e. ( M (,) N ) B e. RR -> [_ y / x ]_ B e. RR ) ) |
| 151 |
145 150
|
mpan9 |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( M (,) N ) ) -> [_ y / x ]_ B e. RR ) |
| 152 |
112 25 27
|
cbvmpt |
|- ( x e. ( M (,) N ) |-> A ) = ( y e. ( M (,) N ) |-> [_ y / x ]_ A ) |
| 153 |
152
|
oveq2i |
|- ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( RR _D ( y e. ( M (,) N ) |-> [_ y / x ]_ A ) ) |
| 154 |
|
nfcv |
|- F/_ y B |
| 155 |
154 146 148
|
cbvmpt |
|- ( x e. ( M (,) N ) |-> B ) = ( y e. ( M (,) N ) |-> [_ y / x ]_ B ) |
| 156 |
134 153 155
|
3eqtr3g |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. ( M (,) N ) |-> [_ y / x ]_ A ) ) = ( y e. ( M (,) N ) |-> [_ y / x ]_ B ) ) |
| 157 |
86 125 151 156 93 105 59 107
|
dvmptres |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. ( k (,) ( k + 1 ) ) |-> [_ y / x ]_ A ) ) = ( y e. ( k (,) ( k + 1 ) ) |-> [_ y / x ]_ B ) ) |
| 158 |
8
|
anassrs |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> X <_ B ) |
| 159 |
158
|
ralrimiva |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( k (,) ( k + 1 ) ) X <_ B ) |
| 160 |
|
nfcv |
|- F/_ x X |
| 161 |
|
nfcv |
|- F/_ x <_ |
| 162 |
160 161 146
|
nfbr |
|- F/ x X <_ [_ y / x ]_ B |
| 163 |
148
|
breq2d |
|- ( x = y -> ( X <_ B <-> X <_ [_ y / x ]_ B ) ) |
| 164 |
162 163
|
rspc |
|- ( y e. ( k (,) ( k + 1 ) ) -> ( A. x e. ( k (,) ( k + 1 ) ) X <_ B -> X <_ [_ y / x ]_ B ) ) |
| 165 |
159 164
|
mpan9 |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k (,) ( k + 1 ) ) ) -> X <_ [_ y / x ]_ B ) |
| 166 |
46
|
rexrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. RR* ) |
| 167 |
54
|
rexrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. RR* ) |
| 168 |
46
|
lep1d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> k <_ ( k + 1 ) ) |
| 169 |
|
lbicc2 |
|- ( ( k e. RR* /\ ( k + 1 ) e. RR* /\ k <_ ( k + 1 ) ) -> k e. ( k [,] ( k + 1 ) ) ) |
| 170 |
166 167 168 169
|
syl3anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. ( k [,] ( k + 1 ) ) ) |
| 171 |
|
ubicc2 |
|- ( ( k e. RR* /\ ( k + 1 ) e. RR* /\ k <_ ( k + 1 ) ) -> ( k + 1 ) e. ( k [,] ( k + 1 ) ) ) |
| 172 |
166 167 168 171
|
syl3anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. ( k [,] ( k + 1 ) ) ) |
| 173 |
|
oveq2 |
|- ( y = k -> ( X x. y ) = ( X x. k ) ) |
| 174 |
|
oveq2 |
|- ( y = ( k + 1 ) -> ( X x. y ) = ( X x. ( k + 1 ) ) ) |
| 175 |
46 54 84 111 119 157 165 170 172 168 173 39 174 34
|
dvle |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( X x. ( k + 1 ) ) - ( X x. k ) ) <_ ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) |
| 176 |
58 175
|
eqbrtrrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> X <_ ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) |
| 177 |
10 7 43 176
|
fsumle |
|- ( ph -> sum_ k e. ( M ..^ N ) X <_ sum_ k e. ( M ..^ N ) ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) |
| 178 |
|
vex |
|- y e. _V |
| 179 |
178
|
a1i |
|- ( y = M -> y e. _V ) |
| 180 |
|
eqeq2 |
|- ( y = M -> ( x = y <-> x = M ) ) |
| 181 |
180
|
biimpa |
|- ( ( y = M /\ x = y ) -> x = M ) |
| 182 |
181 5
|
syl |
|- ( ( y = M /\ x = y ) -> A = C ) |
| 183 |
179 182
|
csbied |
|- ( y = M -> [_ y / x ]_ A = C ) |
| 184 |
178
|
a1i |
|- ( y = N -> y e. _V ) |
| 185 |
|
eqeq2 |
|- ( y = N -> ( x = y <-> x = N ) ) |
| 186 |
185
|
biimpa |
|- ( ( y = N /\ x = y ) -> x = N ) |
| 187 |
186 6
|
syl |
|- ( ( y = N /\ x = y ) -> A = D ) |
| 188 |
184 187
|
csbied |
|- ( y = N -> [_ y / x ]_ A = D ) |
| 189 |
31
|
recnd |
|- ( ( ph /\ y e. ( M ... N ) ) -> [_ y / x ]_ A e. CC ) |
| 190 |
39 34 183 188 1 189
|
telfsumo2 |
|- ( ph -> sum_ k e. ( M ..^ N ) ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) = ( D - C ) ) |
| 191 |
177 190
|
breqtrd |
|- ( ph -> sum_ k e. ( M ..^ N ) X <_ ( D - C ) ) |