Step |
Hyp |
Ref |
Expression |
1 |
|
dvfsum.s |
|- S = ( T (,) +oo ) |
2 |
|
dvfsum.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
dvfsum.m |
|- ( ph -> M e. ZZ ) |
4 |
|
dvfsum.d |
|- ( ph -> D e. RR ) |
5 |
|
dvfsum.md |
|- ( ph -> M <_ ( D + 1 ) ) |
6 |
|
dvfsum.t |
|- ( ph -> T e. RR ) |
7 |
|
dvfsum.a |
|- ( ( ph /\ x e. S ) -> A e. RR ) |
8 |
|
dvfsum.b1 |
|- ( ( ph /\ x e. S ) -> B e. V ) |
9 |
|
dvfsum.b2 |
|- ( ( ph /\ x e. Z ) -> B e. RR ) |
10 |
|
dvfsum.b3 |
|- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
11 |
|
dvfsum.c |
|- ( x = k -> B = C ) |
12 |
|
dvfsumrlim.l |
|- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k ) ) -> C <_ B ) |
13 |
|
dvfsumrlim.g |
|- G = ( x e. S |-> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) ) |
14 |
|
dvfsumrlim.k |
|- ( ph -> ( x e. S |-> B ) ~~>r 0 ) |
15 |
|
dvfsumrlim2.1 |
|- ( ph -> X e. S ) |
16 |
|
dvfsumrlim2.2 |
|- ( ph -> D <_ X ) |
17 |
|
ioossre |
|- ( T (,) +oo ) C_ RR |
18 |
1 17
|
eqsstri |
|- S C_ RR |
19 |
18 15
|
sselid |
|- ( ph -> X e. RR ) |
20 |
19
|
rexrd |
|- ( ph -> X e. RR* ) |
21 |
19
|
renepnfd |
|- ( ph -> X =/= +oo ) |
22 |
|
icopnfsup |
|- ( ( X e. RR* /\ X =/= +oo ) -> sup ( ( X [,) +oo ) , RR* , < ) = +oo ) |
23 |
20 21 22
|
syl2anc |
|- ( ph -> sup ( ( X [,) +oo ) , RR* , < ) = +oo ) |
24 |
23
|
adantr |
|- ( ( ph /\ G ~~>r L ) -> sup ( ( X [,) +oo ) , RR* , < ) = +oo ) |
25 |
1 2 3 4 5 6 7 8 9 10 11 13
|
dvfsumrlimf |
|- ( ph -> G : S --> RR ) |
26 |
25
|
ad2antrr |
|- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> G : S --> RR ) |
27 |
15
|
ad2antrr |
|- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> X e. S ) |
28 |
26 27
|
ffvelrnd |
|- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> ( G ` X ) e. RR ) |
29 |
28
|
recnd |
|- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> ( G ` X ) e. CC ) |
30 |
6
|
rexrd |
|- ( ph -> T e. RR* ) |
31 |
15 1
|
eleqtrdi |
|- ( ph -> X e. ( T (,) +oo ) ) |
32 |
|
elioopnf |
|- ( T e. RR* -> ( X e. ( T (,) +oo ) <-> ( X e. RR /\ T < X ) ) ) |
33 |
30 32
|
syl |
|- ( ph -> ( X e. ( T (,) +oo ) <-> ( X e. RR /\ T < X ) ) ) |
34 |
31 33
|
mpbid |
|- ( ph -> ( X e. RR /\ T < X ) ) |
35 |
34
|
simprd |
|- ( ph -> T < X ) |
36 |
|
df-ioo |
|- (,) = ( u e. RR* , v e. RR* |-> { w e. RR* | ( u < w /\ w < v ) } ) |
37 |
|
df-ico |
|- [,) = ( u e. RR* , v e. RR* |-> { w e. RR* | ( u <_ w /\ w < v ) } ) |
38 |
|
xrltletr |
|- ( ( T e. RR* /\ X e. RR* /\ z e. RR* ) -> ( ( T < X /\ X <_ z ) -> T < z ) ) |
39 |
36 37 38
|
ixxss1 |
|- ( ( T e. RR* /\ T < X ) -> ( X [,) +oo ) C_ ( T (,) +oo ) ) |
40 |
30 35 39
|
syl2anc |
|- ( ph -> ( X [,) +oo ) C_ ( T (,) +oo ) ) |
41 |
40 1
|
sseqtrrdi |
|- ( ph -> ( X [,) +oo ) C_ S ) |
42 |
41
|
adantr |
|- ( ( ph /\ G ~~>r L ) -> ( X [,) +oo ) C_ S ) |
43 |
42
|
sselda |
|- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> y e. S ) |
44 |
26 43
|
ffvelrnd |
|- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> ( G ` y ) e. RR ) |
45 |
44
|
recnd |
|- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> ( G ` y ) e. CC ) |
46 |
29 45
|
subcld |
|- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> ( ( G ` X ) - ( G ` y ) ) e. CC ) |
47 |
|
pnfxr |
|- +oo e. RR* |
48 |
|
icossre |
|- ( ( X e. RR /\ +oo e. RR* ) -> ( X [,) +oo ) C_ RR ) |
49 |
19 47 48
|
sylancl |
|- ( ph -> ( X [,) +oo ) C_ RR ) |
50 |
49
|
adantr |
|- ( ( ph /\ G ~~>r L ) -> ( X [,) +oo ) C_ RR ) |
51 |
|
rlimf |
|- ( G ~~>r L -> G : dom G --> CC ) |
52 |
51
|
adantl |
|- ( ( ph /\ G ~~>r L ) -> G : dom G --> CC ) |
53 |
|
ovex |
|- ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) e. _V |
54 |
53 13
|
dmmpti |
|- dom G = S |
55 |
54
|
feq2i |
|- ( G : dom G --> CC <-> G : S --> CC ) |
56 |
52 55
|
sylib |
|- ( ( ph /\ G ~~>r L ) -> G : S --> CC ) |
57 |
15
|
adantr |
|- ( ( ph /\ G ~~>r L ) -> X e. S ) |
58 |
56 57
|
ffvelrnd |
|- ( ( ph /\ G ~~>r L ) -> ( G ` X ) e. CC ) |
59 |
|
rlimconst |
|- ( ( ( X [,) +oo ) C_ RR /\ ( G ` X ) e. CC ) -> ( y e. ( X [,) +oo ) |-> ( G ` X ) ) ~~>r ( G ` X ) ) |
60 |
50 58 59
|
syl2anc |
|- ( ( ph /\ G ~~>r L ) -> ( y e. ( X [,) +oo ) |-> ( G ` X ) ) ~~>r ( G ` X ) ) |
61 |
56
|
feqmptd |
|- ( ( ph /\ G ~~>r L ) -> G = ( y e. S |-> ( G ` y ) ) ) |
62 |
|
simpr |
|- ( ( ph /\ G ~~>r L ) -> G ~~>r L ) |
63 |
61 62
|
eqbrtrrd |
|- ( ( ph /\ G ~~>r L ) -> ( y e. S |-> ( G ` y ) ) ~~>r L ) |
64 |
42 63
|
rlimres2 |
|- ( ( ph /\ G ~~>r L ) -> ( y e. ( X [,) +oo ) |-> ( G ` y ) ) ~~>r L ) |
65 |
29 45 60 64
|
rlimsub |
|- ( ( ph /\ G ~~>r L ) -> ( y e. ( X [,) +oo ) |-> ( ( G ` X ) - ( G ` y ) ) ) ~~>r ( ( G ` X ) - L ) ) |
66 |
46 65
|
rlimabs |
|- ( ( ph /\ G ~~>r L ) -> ( y e. ( X [,) +oo ) |-> ( abs ` ( ( G ` X ) - ( G ` y ) ) ) ) ~~>r ( abs ` ( ( G ` X ) - L ) ) ) |
67 |
18
|
a1i |
|- ( ph -> S C_ RR ) |
68 |
67 7 8 10
|
dvmptrecl |
|- ( ( ph /\ x e. S ) -> B e. RR ) |
69 |
68
|
ralrimiva |
|- ( ph -> A. x e. S B e. RR ) |
70 |
|
nfcsb1v |
|- F/_ x [_ X / x ]_ B |
71 |
70
|
nfel1 |
|- F/ x [_ X / x ]_ B e. RR |
72 |
|
csbeq1a |
|- ( x = X -> B = [_ X / x ]_ B ) |
73 |
72
|
eleq1d |
|- ( x = X -> ( B e. RR <-> [_ X / x ]_ B e. RR ) ) |
74 |
71 73
|
rspc |
|- ( X e. S -> ( A. x e. S B e. RR -> [_ X / x ]_ B e. RR ) ) |
75 |
15 69 74
|
sylc |
|- ( ph -> [_ X / x ]_ B e. RR ) |
76 |
75
|
recnd |
|- ( ph -> [_ X / x ]_ B e. CC ) |
77 |
|
rlimconst |
|- ( ( ( X [,) +oo ) C_ RR /\ [_ X / x ]_ B e. CC ) -> ( y e. ( X [,) +oo ) |-> [_ X / x ]_ B ) ~~>r [_ X / x ]_ B ) |
78 |
49 76 77
|
syl2anc |
|- ( ph -> ( y e. ( X [,) +oo ) |-> [_ X / x ]_ B ) ~~>r [_ X / x ]_ B ) |
79 |
78
|
adantr |
|- ( ( ph /\ G ~~>r L ) -> ( y e. ( X [,) +oo ) |-> [_ X / x ]_ B ) ~~>r [_ X / x ]_ B ) |
80 |
46
|
abscld |
|- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> ( abs ` ( ( G ` X ) - ( G ` y ) ) ) e. RR ) |
81 |
75
|
ad2antrr |
|- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> [_ X / x ]_ B e. RR ) |
82 |
29 45
|
abssubd |
|- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> ( abs ` ( ( G ` X ) - ( G ` y ) ) ) = ( abs ` ( ( G ` y ) - ( G ` X ) ) ) ) |
83 |
3
|
adantr |
|- ( ( ph /\ y e. ( X [,) +oo ) ) -> M e. ZZ ) |
84 |
4
|
adantr |
|- ( ( ph /\ y e. ( X [,) +oo ) ) -> D e. RR ) |
85 |
5
|
adantr |
|- ( ( ph /\ y e. ( X [,) +oo ) ) -> M <_ ( D + 1 ) ) |
86 |
6
|
adantr |
|- ( ( ph /\ y e. ( X [,) +oo ) ) -> T e. RR ) |
87 |
7
|
adantlr |
|- ( ( ( ph /\ y e. ( X [,) +oo ) ) /\ x e. S ) -> A e. RR ) |
88 |
8
|
adantlr |
|- ( ( ( ph /\ y e. ( X [,) +oo ) ) /\ x e. S ) -> B e. V ) |
89 |
9
|
adantlr |
|- ( ( ( ph /\ y e. ( X [,) +oo ) ) /\ x e. Z ) -> B e. RR ) |
90 |
10
|
adantr |
|- ( ( ph /\ y e. ( X [,) +oo ) ) -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
91 |
47
|
a1i |
|- ( ( ph /\ y e. ( X [,) +oo ) ) -> +oo e. RR* ) |
92 |
|
3simpa |
|- ( ( D <_ x /\ x <_ k /\ k <_ +oo ) -> ( D <_ x /\ x <_ k ) ) |
93 |
92 12
|
syl3an3 |
|- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ +oo ) ) -> C <_ B ) |
94 |
93
|
3adant1r |
|- ( ( ( ph /\ y e. ( X [,) +oo ) ) /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k /\ k <_ +oo ) ) -> C <_ B ) |
95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
dvfsumrlimge0 |
|- ( ( ph /\ ( x e. S /\ D <_ x ) ) -> 0 <_ B ) |
96 |
95
|
3adantr3 |
|- ( ( ph /\ ( x e. S /\ D <_ x /\ x <_ +oo ) ) -> 0 <_ B ) |
97 |
96
|
adantlr |
|- ( ( ( ph /\ y e. ( X [,) +oo ) ) /\ ( x e. S /\ D <_ x /\ x <_ +oo ) ) -> 0 <_ B ) |
98 |
15
|
adantr |
|- ( ( ph /\ y e. ( X [,) +oo ) ) -> X e. S ) |
99 |
41
|
sselda |
|- ( ( ph /\ y e. ( X [,) +oo ) ) -> y e. S ) |
100 |
16
|
adantr |
|- ( ( ph /\ y e. ( X [,) +oo ) ) -> D <_ X ) |
101 |
|
elicopnf |
|- ( X e. RR -> ( y e. ( X [,) +oo ) <-> ( y e. RR /\ X <_ y ) ) ) |
102 |
19 101
|
syl |
|- ( ph -> ( y e. ( X [,) +oo ) <-> ( y e. RR /\ X <_ y ) ) ) |
103 |
102
|
simplbda |
|- ( ( ph /\ y e. ( X [,) +oo ) ) -> X <_ y ) |
104 |
102
|
simprbda |
|- ( ( ph /\ y e. ( X [,) +oo ) ) -> y e. RR ) |
105 |
104
|
rexrd |
|- ( ( ph /\ y e. ( X [,) +oo ) ) -> y e. RR* ) |
106 |
|
pnfge |
|- ( y e. RR* -> y <_ +oo ) |
107 |
105 106
|
syl |
|- ( ( ph /\ y e. ( X [,) +oo ) ) -> y <_ +oo ) |
108 |
1 2 83 84 85 86 87 88 89 90 11 91 94 13 97 98 99 100 103 107
|
dvfsumlem4 |
|- ( ( ph /\ y e. ( X [,) +oo ) ) -> ( abs ` ( ( G ` y ) - ( G ` X ) ) ) <_ [_ X / x ]_ B ) |
109 |
108
|
adantlr |
|- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> ( abs ` ( ( G ` y ) - ( G ` X ) ) ) <_ [_ X / x ]_ B ) |
110 |
82 109
|
eqbrtrd |
|- ( ( ( ph /\ G ~~>r L ) /\ y e. ( X [,) +oo ) ) -> ( abs ` ( ( G ` X ) - ( G ` y ) ) ) <_ [_ X / x ]_ B ) |
111 |
24 66 79 80 81 110
|
rlimle |
|- ( ( ph /\ G ~~>r L ) -> ( abs ` ( ( G ` X ) - L ) ) <_ [_ X / x ]_ B ) |