Step |
Hyp |
Ref |
Expression |
1 |
|
dvfsum.s |
|- S = ( T (,) +oo ) |
2 |
|
dvfsum.z |
|- Z = ( ZZ>= ` M ) |
3 |
|
dvfsum.m |
|- ( ph -> M e. ZZ ) |
4 |
|
dvfsum.d |
|- ( ph -> D e. RR ) |
5 |
|
dvfsum.md |
|- ( ph -> M <_ ( D + 1 ) ) |
6 |
|
dvfsum.t |
|- ( ph -> T e. RR ) |
7 |
|
dvfsum.a |
|- ( ( ph /\ x e. S ) -> A e. RR ) |
8 |
|
dvfsum.b1 |
|- ( ( ph /\ x e. S ) -> B e. V ) |
9 |
|
dvfsum.b2 |
|- ( ( ph /\ x e. Z ) -> B e. RR ) |
10 |
|
dvfsum.b3 |
|- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
11 |
|
dvfsum.c |
|- ( x = k -> B = C ) |
12 |
|
dvfsumrlim.l |
|- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k ) ) -> C <_ B ) |
13 |
|
dvfsumrlim.g |
|- G = ( x e. S |-> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) ) |
14 |
|
dvfsumrlim.k |
|- ( ph -> ( x e. S |-> B ) ~~>r 0 ) |
15 |
|
dvfsumrlim3.1 |
|- ( x = X -> B = E ) |
16 |
1 2 3 4 5 6 7 8 9 10 11 13
|
dvfsumrlimf |
|- ( ph -> G : S --> RR ) |
17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
dvfsumrlim |
|- ( ph -> G e. dom ~~>r ) |
18 |
3
|
adantr |
|- ( ( ph /\ ( D <_ X /\ X e. S ) ) -> M e. ZZ ) |
19 |
4
|
adantr |
|- ( ( ph /\ ( D <_ X /\ X e. S ) ) -> D e. RR ) |
20 |
5
|
adantr |
|- ( ( ph /\ ( D <_ X /\ X e. S ) ) -> M <_ ( D + 1 ) ) |
21 |
6
|
adantr |
|- ( ( ph /\ ( D <_ X /\ X e. S ) ) -> T e. RR ) |
22 |
7
|
adantlr |
|- ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ x e. S ) -> A e. RR ) |
23 |
8
|
adantlr |
|- ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ x e. S ) -> B e. V ) |
24 |
9
|
adantlr |
|- ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ x e. Z ) -> B e. RR ) |
25 |
10
|
adantr |
|- ( ( ph /\ ( D <_ X /\ X e. S ) ) -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) ) |
26 |
12
|
3adant1r |
|- ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k ) ) -> C <_ B ) |
27 |
14
|
adantr |
|- ( ( ph /\ ( D <_ X /\ X e. S ) ) -> ( x e. S |-> B ) ~~>r 0 ) |
28 |
|
simprr |
|- ( ( ph /\ ( D <_ X /\ X e. S ) ) -> X e. S ) |
29 |
|
simprl |
|- ( ( ph /\ ( D <_ X /\ X e. S ) ) -> D <_ X ) |
30 |
1 2 18 19 20 21 22 23 24 25 11 26 13 27 28 29
|
dvfsumrlim2 |
|- ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ G ~~>r L ) -> ( abs ` ( ( G ` X ) - L ) ) <_ [_ X / x ]_ B ) |
31 |
28
|
adantr |
|- ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ G ~~>r L ) -> X e. S ) |
32 |
|
nfcvd |
|- ( X e. S -> F/_ x E ) |
33 |
32 15
|
csbiegf |
|- ( X e. S -> [_ X / x ]_ B = E ) |
34 |
31 33
|
syl |
|- ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ G ~~>r L ) -> [_ X / x ]_ B = E ) |
35 |
30 34
|
breqtrd |
|- ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ G ~~>r L ) -> ( abs ` ( ( G ` X ) - L ) ) <_ E ) |
36 |
35
|
exp42 |
|- ( ph -> ( D <_ X -> ( X e. S -> ( G ~~>r L -> ( abs ` ( ( G ` X ) - L ) ) <_ E ) ) ) ) |
37 |
36
|
com24 |
|- ( ph -> ( G ~~>r L -> ( X e. S -> ( D <_ X -> ( abs ` ( ( G ` X ) - L ) ) <_ E ) ) ) ) |
38 |
37
|
3impd |
|- ( ph -> ( ( G ~~>r L /\ X e. S /\ D <_ X ) -> ( abs ` ( ( G ` X ) - L ) ) <_ E ) ) |
39 |
16 17 38
|
3jca |
|- ( ph -> ( G : S --> RR /\ G e. dom ~~>r /\ ( ( G ~~>r L /\ X e. S /\ D <_ X ) -> ( abs ` ( ( G ` X ) - L ) ) <_ E ) ) ) |