Metamath Proof Explorer


Theorem dvfsumrlim3

Description: Conjoin the statements of dvfsumrlim and dvfsumrlim2 . (This is useful as a target for lemmas, because the hypotheses to this theorem are complex, and we don't want to repeat ourselves.) (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses dvfsum.s
|- S = ( T (,) +oo )
dvfsum.z
|- Z = ( ZZ>= ` M )
dvfsum.m
|- ( ph -> M e. ZZ )
dvfsum.d
|- ( ph -> D e. RR )
dvfsum.md
|- ( ph -> M <_ ( D + 1 ) )
dvfsum.t
|- ( ph -> T e. RR )
dvfsum.a
|- ( ( ph /\ x e. S ) -> A e. RR )
dvfsum.b1
|- ( ( ph /\ x e. S ) -> B e. V )
dvfsum.b2
|- ( ( ph /\ x e. Z ) -> B e. RR )
dvfsum.b3
|- ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) )
dvfsum.c
|- ( x = k -> B = C )
dvfsumrlim.l
|- ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k ) ) -> C <_ B )
dvfsumrlim.g
|- G = ( x e. S |-> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) )
dvfsumrlim.k
|- ( ph -> ( x e. S |-> B ) ~~>r 0 )
dvfsumrlim3.1
|- ( x = X -> B = E )
Assertion dvfsumrlim3
|- ( ph -> ( G : S --> RR /\ G e. dom ~~>r /\ ( ( G ~~>r L /\ X e. S /\ D <_ X ) -> ( abs ` ( ( G ` X ) - L ) ) <_ E ) ) )

Proof

Step Hyp Ref Expression
1 dvfsum.s
 |-  S = ( T (,) +oo )
2 dvfsum.z
 |-  Z = ( ZZ>= ` M )
3 dvfsum.m
 |-  ( ph -> M e. ZZ )
4 dvfsum.d
 |-  ( ph -> D e. RR )
5 dvfsum.md
 |-  ( ph -> M <_ ( D + 1 ) )
6 dvfsum.t
 |-  ( ph -> T e. RR )
7 dvfsum.a
 |-  ( ( ph /\ x e. S ) -> A e. RR )
8 dvfsum.b1
 |-  ( ( ph /\ x e. S ) -> B e. V )
9 dvfsum.b2
 |-  ( ( ph /\ x e. Z ) -> B e. RR )
10 dvfsum.b3
 |-  ( ph -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) )
11 dvfsum.c
 |-  ( x = k -> B = C )
12 dvfsumrlim.l
 |-  ( ( ph /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k ) ) -> C <_ B )
13 dvfsumrlim.g
 |-  G = ( x e. S |-> ( sum_ k e. ( M ... ( |_ ` x ) ) C - A ) )
14 dvfsumrlim.k
 |-  ( ph -> ( x e. S |-> B ) ~~>r 0 )
15 dvfsumrlim3.1
 |-  ( x = X -> B = E )
16 1 2 3 4 5 6 7 8 9 10 11 13 dvfsumrlimf
 |-  ( ph -> G : S --> RR )
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 dvfsumrlim
 |-  ( ph -> G e. dom ~~>r )
18 3 adantr
 |-  ( ( ph /\ ( D <_ X /\ X e. S ) ) -> M e. ZZ )
19 4 adantr
 |-  ( ( ph /\ ( D <_ X /\ X e. S ) ) -> D e. RR )
20 5 adantr
 |-  ( ( ph /\ ( D <_ X /\ X e. S ) ) -> M <_ ( D + 1 ) )
21 6 adantr
 |-  ( ( ph /\ ( D <_ X /\ X e. S ) ) -> T e. RR )
22 7 adantlr
 |-  ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ x e. S ) -> A e. RR )
23 8 adantlr
 |-  ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ x e. S ) -> B e. V )
24 9 adantlr
 |-  ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ x e. Z ) -> B e. RR )
25 10 adantr
 |-  ( ( ph /\ ( D <_ X /\ X e. S ) ) -> ( RR _D ( x e. S |-> A ) ) = ( x e. S |-> B ) )
26 12 3adant1r
 |-  ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ ( x e. S /\ k e. S ) /\ ( D <_ x /\ x <_ k ) ) -> C <_ B )
27 14 adantr
 |-  ( ( ph /\ ( D <_ X /\ X e. S ) ) -> ( x e. S |-> B ) ~~>r 0 )
28 simprr
 |-  ( ( ph /\ ( D <_ X /\ X e. S ) ) -> X e. S )
29 simprl
 |-  ( ( ph /\ ( D <_ X /\ X e. S ) ) -> D <_ X )
30 1 2 18 19 20 21 22 23 24 25 11 26 13 27 28 29 dvfsumrlim2
 |-  ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ G ~~>r L ) -> ( abs ` ( ( G ` X ) - L ) ) <_ [_ X / x ]_ B )
31 28 adantr
 |-  ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ G ~~>r L ) -> X e. S )
32 nfcvd
 |-  ( X e. S -> F/_ x E )
33 32 15 csbiegf
 |-  ( X e. S -> [_ X / x ]_ B = E )
34 31 33 syl
 |-  ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ G ~~>r L ) -> [_ X / x ]_ B = E )
35 30 34 breqtrd
 |-  ( ( ( ph /\ ( D <_ X /\ X e. S ) ) /\ G ~~>r L ) -> ( abs ` ( ( G ` X ) - L ) ) <_ E )
36 35 exp42
 |-  ( ph -> ( D <_ X -> ( X e. S -> ( G ~~>r L -> ( abs ` ( ( G ` X ) - L ) ) <_ E ) ) ) )
37 36 com24
 |-  ( ph -> ( G ~~>r L -> ( X e. S -> ( D <_ X -> ( abs ` ( ( G ` X ) - L ) ) <_ E ) ) ) )
38 37 3impd
 |-  ( ph -> ( ( G ~~>r L /\ X e. S /\ D <_ X ) -> ( abs ` ( ( G ` X ) - L ) ) <_ E ) )
39 16 17 38 3jca
 |-  ( ph -> ( G : S --> RR /\ G e. dom ~~>r /\ ( ( G ~~>r L /\ X e. S /\ D <_ X ) -> ( abs ` ( ( G ` X ) - L ) ) <_ E ) ) )