| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvval.t |
|- T = ( K |`t S ) |
| 2 |
|
dvval.k |
|- K = ( TopOpen ` CCfld ) |
| 3 |
|
df-dv |
|- _D = ( s e. ~P CC , f e. ( CC ^pm s ) |-> U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) ) |
| 4 |
3
|
a1i |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> _D = ( s e. ~P CC , f e. ( CC ^pm s ) |-> U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) ) ) |
| 5 |
2
|
oveq1i |
|- ( K |`t s ) = ( ( TopOpen ` CCfld ) |`t s ) |
| 6 |
|
simprl |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> s = S ) |
| 7 |
6
|
oveq2d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( K |`t s ) = ( K |`t S ) ) |
| 8 |
7 1
|
eqtr4di |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( K |`t s ) = T ) |
| 9 |
5 8
|
eqtr3id |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( ( TopOpen ` CCfld ) |`t s ) = T ) |
| 10 |
9
|
fveq2d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) = ( int ` T ) ) |
| 11 |
|
simprr |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> f = F ) |
| 12 |
11
|
dmeqd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> dom f = dom F ) |
| 13 |
|
simpl2 |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> F : A --> CC ) |
| 14 |
13
|
fdmd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> dom F = A ) |
| 15 |
12 14
|
eqtrd |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> dom f = A ) |
| 16 |
10 15
|
fveq12d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) = ( ( int ` T ) ` A ) ) |
| 17 |
15
|
difeq1d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( dom f \ { x } ) = ( A \ { x } ) ) |
| 18 |
11
|
fveq1d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( f ` z ) = ( F ` z ) ) |
| 19 |
11
|
fveq1d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( f ` x ) = ( F ` x ) ) |
| 20 |
18 19
|
oveq12d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( ( f ` z ) - ( f ` x ) ) = ( ( F ` z ) - ( F ` x ) ) ) |
| 21 |
20
|
oveq1d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) = ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |
| 22 |
17 21
|
mpteq12dv |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) = ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) ) |
| 23 |
22
|
oveq1d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) = ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) |
| 24 |
23
|
xpeq2d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) = ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) ) |
| 25 |
16 24
|
iuneq12d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ ( s = S /\ f = F ) ) -> U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) = U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) ) |
| 26 |
|
simpr |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ s = S ) -> s = S ) |
| 27 |
26
|
oveq2d |
|- ( ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) /\ s = S ) -> ( CC ^pm s ) = ( CC ^pm S ) ) |
| 28 |
|
simp1 |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> S C_ CC ) |
| 29 |
|
cnex |
|- CC e. _V |
| 30 |
29
|
elpw2 |
|- ( S e. ~P CC <-> S C_ CC ) |
| 31 |
28 30
|
sylibr |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> S e. ~P CC ) |
| 32 |
29
|
a1i |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> CC e. _V ) |
| 33 |
|
simp2 |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> F : A --> CC ) |
| 34 |
|
simp3 |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> A C_ S ) |
| 35 |
|
elpm2r |
|- ( ( ( CC e. _V /\ S e. ~P CC ) /\ ( F : A --> CC /\ A C_ S ) ) -> F e. ( CC ^pm S ) ) |
| 36 |
32 31 33 34 35
|
syl22anc |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> F e. ( CC ^pm S ) ) |
| 37 |
|
limccl |
|- ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) C_ CC |
| 38 |
|
xpss2 |
|- ( ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) C_ CC -> ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ ( { x } X. CC ) ) |
| 39 |
37 38
|
ax-mp |
|- ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ ( { x } X. CC ) |
| 40 |
39
|
rgenw |
|- A. x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ ( { x } X. CC ) |
| 41 |
|
ss2iun |
|- ( A. x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ ( { x } X. CC ) -> U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ U_ x e. ( ( int ` T ) ` A ) ( { x } X. CC ) ) |
| 42 |
40 41
|
ax-mp |
|- U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ U_ x e. ( ( int ` T ) ` A ) ( { x } X. CC ) |
| 43 |
|
iunxpconst |
|- U_ x e. ( ( int ` T ) ` A ) ( { x } X. CC ) = ( ( ( int ` T ) ` A ) X. CC ) |
| 44 |
42 43
|
sseqtri |
|- U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ ( ( ( int ` T ) ` A ) X. CC ) |
| 45 |
44
|
a1i |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ ( ( ( int ` T ) ` A ) X. CC ) ) |
| 46 |
|
fvex |
|- ( ( int ` T ) ` A ) e. _V |
| 47 |
46 29
|
xpex |
|- ( ( ( int ` T ) ` A ) X. CC ) e. _V |
| 48 |
47
|
ssex |
|- ( U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) C_ ( ( ( int ` T ) ` A ) X. CC ) -> U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) e. _V ) |
| 49 |
45 48
|
syl |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) e. _V ) |
| 50 |
4 25 27 31 36 49
|
ovmpodx |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( S _D F ) = U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) ) |
| 51 |
50 45
|
eqsstrd |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( S _D F ) C_ ( ( ( int ` T ) ` A ) X. CC ) ) |
| 52 |
50 51
|
jca |
|- ( ( S C_ CC /\ F : A --> CC /\ A C_ S ) -> ( ( S _D F ) = U_ x e. ( ( int ` T ) ` A ) ( { x } X. ( ( z e. ( A \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) /\ ( S _D F ) C_ ( ( ( int ` T ) ` A ) X. CC ) ) ) |