| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvgt0.a |
|- ( ph -> A e. RR ) |
| 2 |
|
dvgt0.b |
|- ( ph -> B e. RR ) |
| 3 |
|
dvgt0.f |
|- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
| 4 |
|
dvgt0.d |
|- ( ph -> ( RR _D F ) : ( A (,) B ) --> RR+ ) |
| 5 |
|
ltso |
|- < Or RR |
| 6 |
1 2 3 4
|
dvgt0lem1 |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. RR+ ) |
| 7 |
6
|
rpgt0d |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> 0 < ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) |
| 8 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
| 9 |
3 8
|
syl |
|- ( ph -> F : ( A [,] B ) --> RR ) |
| 10 |
9
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> F : ( A [,] B ) --> RR ) |
| 11 |
|
simplrr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> y e. ( A [,] B ) ) |
| 12 |
10 11
|
ffvelcdmd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` y ) e. RR ) |
| 13 |
|
simplrl |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x e. ( A [,] B ) ) |
| 14 |
10 13
|
ffvelcdmd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` x ) e. RR ) |
| 15 |
12 14
|
resubcld |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F ` y ) - ( F ` x ) ) e. RR ) |
| 16 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 17 |
1 2 16
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 18 |
17
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( A [,] B ) C_ RR ) |
| 19 |
18 11
|
sseldd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> y e. RR ) |
| 20 |
18 13
|
sseldd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x e. RR ) |
| 21 |
19 20
|
resubcld |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( y - x ) e. RR ) |
| 22 |
|
simpr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x < y ) |
| 23 |
20 19
|
posdifd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( x < y <-> 0 < ( y - x ) ) ) |
| 24 |
22 23
|
mpbid |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> 0 < ( y - x ) ) |
| 25 |
|
gt0div |
|- ( ( ( ( F ` y ) - ( F ` x ) ) e. RR /\ ( y - x ) e. RR /\ 0 < ( y - x ) ) -> ( 0 < ( ( F ` y ) - ( F ` x ) ) <-> 0 < ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ) |
| 26 |
15 21 24 25
|
syl3anc |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( 0 < ( ( F ` y ) - ( F ` x ) ) <-> 0 < ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) ) ) |
| 27 |
7 26
|
mpbird |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> 0 < ( ( F ` y ) - ( F ` x ) ) ) |
| 28 |
14 12
|
posdifd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F ` x ) < ( F ` y ) <-> 0 < ( ( F ` y ) - ( F ` x ) ) ) ) |
| 29 |
27 28
|
mpbird |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` x ) < ( F ` y ) ) |
| 30 |
1 2 3 4 5 29
|
dvgt0lem2 |
|- ( ph -> F Isom < , < ( ( A [,] B ) , ran F ) ) |