Step |
Hyp |
Ref |
Expression |
1 |
|
dvgt0.a |
|- ( ph -> A e. RR ) |
2 |
|
dvgt0.b |
|- ( ph -> B e. RR ) |
3 |
|
dvgt0.f |
|- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
4 |
|
dvgt0lem.d |
|- ( ph -> ( RR _D F ) : ( A (,) B ) --> S ) |
5 |
|
iccssxr |
|- ( A [,] B ) C_ RR* |
6 |
|
simplrl |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> X e. ( A [,] B ) ) |
7 |
5 6
|
sselid |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> X e. RR* ) |
8 |
|
simplrr |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> Y e. ( A [,] B ) ) |
9 |
5 8
|
sselid |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> Y e. RR* ) |
10 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
11 |
1 2 10
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
12 |
11
|
ad2antrr |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( A [,] B ) C_ RR ) |
13 |
12 6
|
sseldd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> X e. RR ) |
14 |
12 8
|
sseldd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> Y e. RR ) |
15 |
|
simpr |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> X < Y ) |
16 |
13 14 15
|
ltled |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> X <_ Y ) |
17 |
|
ubicc2 |
|- ( ( X e. RR* /\ Y e. RR* /\ X <_ Y ) -> Y e. ( X [,] Y ) ) |
18 |
7 9 16 17
|
syl3anc |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> Y e. ( X [,] Y ) ) |
19 |
18
|
fvresd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( F |` ( X [,] Y ) ) ` Y ) = ( F ` Y ) ) |
20 |
|
lbicc2 |
|- ( ( X e. RR* /\ Y e. RR* /\ X <_ Y ) -> X e. ( X [,] Y ) ) |
21 |
7 9 16 20
|
syl3anc |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> X e. ( X [,] Y ) ) |
22 |
21
|
fvresd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( F |` ( X [,] Y ) ) ` X ) = ( F ` X ) ) |
23 |
19 22
|
oveq12d |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) = ( ( F ` Y ) - ( F ` X ) ) ) |
24 |
23
|
oveq1d |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) = ( ( ( F ` Y ) - ( F ` X ) ) / ( Y - X ) ) ) |
25 |
|
iccss2 |
|- ( ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) -> ( X [,] Y ) C_ ( A [,] B ) ) |
26 |
25
|
ad2antlr |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( X [,] Y ) C_ ( A [,] B ) ) |
27 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> F e. ( ( A [,] B ) -cn-> RR ) ) |
28 |
|
rescncf |
|- ( ( X [,] Y ) C_ ( A [,] B ) -> ( F e. ( ( A [,] B ) -cn-> RR ) -> ( F |` ( X [,] Y ) ) e. ( ( X [,] Y ) -cn-> RR ) ) ) |
29 |
26 27 28
|
sylc |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( F |` ( X [,] Y ) ) e. ( ( X [,] Y ) -cn-> RR ) ) |
30 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( RR _D F ) : ( A (,) B ) --> S ) |
31 |
1
|
ad2antrr |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> A e. RR ) |
32 |
31
|
rexrd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> A e. RR* ) |
33 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> B e. RR ) |
34 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( X e. ( A [,] B ) <-> ( X e. RR /\ A <_ X /\ X <_ B ) ) ) |
35 |
31 33 34
|
syl2anc |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( X e. ( A [,] B ) <-> ( X e. RR /\ A <_ X /\ X <_ B ) ) ) |
36 |
6 35
|
mpbid |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( X e. RR /\ A <_ X /\ X <_ B ) ) |
37 |
36
|
simp2d |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> A <_ X ) |
38 |
|
iooss1 |
|- ( ( A e. RR* /\ A <_ X ) -> ( X (,) Y ) C_ ( A (,) Y ) ) |
39 |
32 37 38
|
syl2anc |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( X (,) Y ) C_ ( A (,) Y ) ) |
40 |
33
|
rexrd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> B e. RR* ) |
41 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( Y e. ( A [,] B ) <-> ( Y e. RR /\ A <_ Y /\ Y <_ B ) ) ) |
42 |
31 33 41
|
syl2anc |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( Y e. ( A [,] B ) <-> ( Y e. RR /\ A <_ Y /\ Y <_ B ) ) ) |
43 |
8 42
|
mpbid |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( Y e. RR /\ A <_ Y /\ Y <_ B ) ) |
44 |
43
|
simp3d |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> Y <_ B ) |
45 |
|
iooss2 |
|- ( ( B e. RR* /\ Y <_ B ) -> ( A (,) Y ) C_ ( A (,) B ) ) |
46 |
40 44 45
|
syl2anc |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( A (,) Y ) C_ ( A (,) B ) ) |
47 |
39 46
|
sstrd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( X (,) Y ) C_ ( A (,) B ) ) |
48 |
30 47
|
fssresd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( RR _D F ) |` ( X (,) Y ) ) : ( X (,) Y ) --> S ) |
49 |
|
ax-resscn |
|- RR C_ CC |
50 |
49
|
a1i |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> RR C_ CC ) |
51 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
52 |
3 51
|
syl |
|- ( ph -> F : ( A [,] B ) --> RR ) |
53 |
52
|
ad2antrr |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> F : ( A [,] B ) --> RR ) |
54 |
|
fss |
|- ( ( F : ( A [,] B ) --> RR /\ RR C_ CC ) -> F : ( A [,] B ) --> CC ) |
55 |
53 49 54
|
sylancl |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> F : ( A [,] B ) --> CC ) |
56 |
|
iccssre |
|- ( ( X e. RR /\ Y e. RR ) -> ( X [,] Y ) C_ RR ) |
57 |
13 14 56
|
syl2anc |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( X [,] Y ) C_ RR ) |
58 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
59 |
58
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
60 |
58 59
|
dvres |
|- ( ( ( RR C_ CC /\ F : ( A [,] B ) --> CC ) /\ ( ( A [,] B ) C_ RR /\ ( X [,] Y ) C_ RR ) ) -> ( RR _D ( F |` ( X [,] Y ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) ) ) |
61 |
50 55 12 57 60
|
syl22anc |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( RR _D ( F |` ( X [,] Y ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) ) ) |
62 |
|
iccntr |
|- ( ( X e. RR /\ Y e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) = ( X (,) Y ) ) |
63 |
13 14 62
|
syl2anc |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) = ( X (,) Y ) ) |
64 |
63
|
reseq2d |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( X [,] Y ) ) ) = ( ( RR _D F ) |` ( X (,) Y ) ) ) |
65 |
61 64
|
eqtrd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( RR _D ( F |` ( X [,] Y ) ) ) = ( ( RR _D F ) |` ( X (,) Y ) ) ) |
66 |
65
|
feq1d |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( RR _D ( F |` ( X [,] Y ) ) ) : ( X (,) Y ) --> S <-> ( ( RR _D F ) |` ( X (,) Y ) ) : ( X (,) Y ) --> S ) ) |
67 |
48 66
|
mpbird |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( RR _D ( F |` ( X [,] Y ) ) ) : ( X (,) Y ) --> S ) |
68 |
67
|
fdmd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> dom ( RR _D ( F |` ( X [,] Y ) ) ) = ( X (,) Y ) ) |
69 |
13 14 15 29 68
|
mvth |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> E. z e. ( X (,) Y ) ( ( RR _D ( F |` ( X [,] Y ) ) ) ` z ) = ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) ) |
70 |
67
|
ffvelrnda |
|- ( ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) /\ z e. ( X (,) Y ) ) -> ( ( RR _D ( F |` ( X [,] Y ) ) ) ` z ) e. S ) |
71 |
|
eleq1 |
|- ( ( ( RR _D ( F |` ( X [,] Y ) ) ) ` z ) = ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) -> ( ( ( RR _D ( F |` ( X [,] Y ) ) ) ` z ) e. S <-> ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) e. S ) ) |
72 |
70 71
|
syl5ibcom |
|- ( ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) /\ z e. ( X (,) Y ) ) -> ( ( ( RR _D ( F |` ( X [,] Y ) ) ) ` z ) = ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) -> ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) e. S ) ) |
73 |
72
|
rexlimdva |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( E. z e. ( X (,) Y ) ( ( RR _D ( F |` ( X [,] Y ) ) ) ` z ) = ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) -> ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) e. S ) ) |
74 |
69 73
|
mpd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( ( ( F |` ( X [,] Y ) ) ` Y ) - ( ( F |` ( X [,] Y ) ) ` X ) ) / ( Y - X ) ) e. S ) |
75 |
24 74
|
eqeltrrd |
|- ( ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) /\ X < Y ) -> ( ( ( F ` Y ) - ( F ` X ) ) / ( Y - X ) ) e. S ) |