Step |
Hyp |
Ref |
Expression |
1 |
|
dvgt0.a |
|- ( ph -> A e. RR ) |
2 |
|
dvgt0.b |
|- ( ph -> B e. RR ) |
3 |
|
dvgt0.f |
|- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
4 |
|
dvgt0lem.d |
|- ( ph -> ( RR _D F ) : ( A (,) B ) --> S ) |
5 |
|
dvgt0lem.o |
|- O Or RR |
6 |
|
dvgt0lem.i |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` x ) O ( F ` y ) ) |
7 |
6
|
ex |
|- ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) -> ( x < y -> ( F ` x ) O ( F ` y ) ) ) |
8 |
7
|
ralrimivva |
|- ( ph -> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x < y -> ( F ` x ) O ( F ` y ) ) ) |
9 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
10 |
1 2 9
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
11 |
|
ltso |
|- < Or RR |
12 |
|
soss |
|- ( ( A [,] B ) C_ RR -> ( < Or RR -> < Or ( A [,] B ) ) ) |
13 |
10 11 12
|
mpisyl |
|- ( ph -> < Or ( A [,] B ) ) |
14 |
5
|
a1i |
|- ( ph -> O Or RR ) |
15 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
16 |
3 15
|
syl |
|- ( ph -> F : ( A [,] B ) --> RR ) |
17 |
|
ssidd |
|- ( ph -> ( A [,] B ) C_ ( A [,] B ) ) |
18 |
|
soisores |
|- ( ( ( < Or ( A [,] B ) /\ O Or RR ) /\ ( F : ( A [,] B ) --> RR /\ ( A [,] B ) C_ ( A [,] B ) ) ) -> ( ( F |` ( A [,] B ) ) Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) <-> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x < y -> ( F ` x ) O ( F ` y ) ) ) ) |
19 |
13 14 16 17 18
|
syl22anc |
|- ( ph -> ( ( F |` ( A [,] B ) ) Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) <-> A. x e. ( A [,] B ) A. y e. ( A [,] B ) ( x < y -> ( F ` x ) O ( F ` y ) ) ) ) |
20 |
8 19
|
mpbird |
|- ( ph -> ( F |` ( A [,] B ) ) Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) ) |
21 |
|
ffn |
|- ( F : ( A [,] B ) --> RR -> F Fn ( A [,] B ) ) |
22 |
3 15 21
|
3syl |
|- ( ph -> F Fn ( A [,] B ) ) |
23 |
|
fnresdm |
|- ( F Fn ( A [,] B ) -> ( F |` ( A [,] B ) ) = F ) |
24 |
|
isoeq1 |
|- ( ( F |` ( A [,] B ) ) = F -> ( ( F |` ( A [,] B ) ) Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) <-> F Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) ) ) |
25 |
22 23 24
|
3syl |
|- ( ph -> ( ( F |` ( A [,] B ) ) Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) <-> F Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) ) ) |
26 |
20 25
|
mpbid |
|- ( ph -> F Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) ) |
27 |
|
fnima |
|- ( F Fn ( A [,] B ) -> ( F " ( A [,] B ) ) = ran F ) |
28 |
|
isoeq5 |
|- ( ( F " ( A [,] B ) ) = ran F -> ( F Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) <-> F Isom < , O ( ( A [,] B ) , ran F ) ) ) |
29 |
22 27 28
|
3syl |
|- ( ph -> ( F Isom < , O ( ( A [,] B ) , ( F " ( A [,] B ) ) ) <-> F Isom < , O ( ( A [,] B ) , ran F ) ) ) |
30 |
26 29
|
mpbid |
|- ( ph -> F Isom < , O ( ( A [,] B ) , ran F ) ) |