Step |
Hyp |
Ref |
Expression |
1 |
|
f1oi |
|- ( _I |` CC ) : CC -1-1-onto-> CC |
2 |
|
f1of |
|- ( ( _I |` CC ) : CC -1-1-onto-> CC -> ( _I |` CC ) : CC --> CC ) |
3 |
1 2
|
mp1i |
|- ( T. -> ( _I |` CC ) : CC --> CC ) |
4 |
|
simp2 |
|- ( ( x e. CC /\ z e. CC /\ z =/= x ) -> z e. CC ) |
5 |
|
simp1 |
|- ( ( x e. CC /\ z e. CC /\ z =/= x ) -> x e. CC ) |
6 |
4 5
|
subcld |
|- ( ( x e. CC /\ z e. CC /\ z =/= x ) -> ( z - x ) e. CC ) |
7 |
|
simp3 |
|- ( ( x e. CC /\ z e. CC /\ z =/= x ) -> z =/= x ) |
8 |
4 5 7
|
subne0d |
|- ( ( x e. CC /\ z e. CC /\ z =/= x ) -> ( z - x ) =/= 0 ) |
9 |
|
fvresi |
|- ( z e. CC -> ( ( _I |` CC ) ` z ) = z ) |
10 |
|
fvresi |
|- ( x e. CC -> ( ( _I |` CC ) ` x ) = x ) |
11 |
9 10
|
oveqan12rd |
|- ( ( x e. CC /\ z e. CC ) -> ( ( ( _I |` CC ) ` z ) - ( ( _I |` CC ) ` x ) ) = ( z - x ) ) |
12 |
11
|
3adant3 |
|- ( ( x e. CC /\ z e. CC /\ z =/= x ) -> ( ( ( _I |` CC ) ` z ) - ( ( _I |` CC ) ` x ) ) = ( z - x ) ) |
13 |
6 8 12
|
diveq1bd |
|- ( ( x e. CC /\ z e. CC /\ z =/= x ) -> ( ( ( ( _I |` CC ) ` z ) - ( ( _I |` CC ) ` x ) ) / ( z - x ) ) = 1 ) |
14 |
13
|
adantl |
|- ( ( T. /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( ( ( ( _I |` CC ) ` z ) - ( ( _I |` CC ) ` x ) ) / ( z - x ) ) = 1 ) |
15 |
|
ax-1cn |
|- 1 e. CC |
16 |
3 14 15
|
dvidlem |
|- ( T. -> ( CC _D ( _I |` CC ) ) = ( CC X. { 1 } ) ) |
17 |
16
|
mptru |
|- ( CC _D ( _I |` CC ) ) = ( CC X. { 1 } ) |