Step |
Hyp |
Ref |
Expression |
1 |
|
dvidlem.1 |
|- ( ph -> F : CC --> CC ) |
2 |
|
dvidlem.2 |
|- ( ( ph /\ ( x e. CC /\ z e. CC /\ z =/= x ) ) -> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) = B ) |
3 |
|
dvidlem.3 |
|- B e. CC |
4 |
|
dvfcn |
|- ( CC _D F ) : dom ( CC _D F ) --> CC |
5 |
|
ssidd |
|- ( ph -> CC C_ CC ) |
6 |
5 1 5
|
dvbss |
|- ( ph -> dom ( CC _D F ) C_ CC ) |
7 |
|
reldv |
|- Rel ( CC _D F ) |
8 |
|
simpr |
|- ( ( ph /\ x e. CC ) -> x e. CC ) |
9 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
10 |
9
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
11 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
12 |
11
|
ntrtop |
|- ( ( TopOpen ` CCfld ) e. Top -> ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = CC ) |
13 |
10 12
|
ax-mp |
|- ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) = CC |
14 |
8 13
|
eleqtrrdi |
|- ( ( ph /\ x e. CC ) -> x e. ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) ) |
15 |
|
limcresi |
|- ( ( z e. CC |-> B ) limCC x ) C_ ( ( ( z e. CC |-> B ) |` ( CC \ { x } ) ) limCC x ) |
16 |
|
ssidd |
|- ( ( ph /\ x e. CC ) -> CC C_ CC ) |
17 |
|
cncfmptc |
|- ( ( B e. CC /\ CC C_ CC /\ CC C_ CC ) -> ( z e. CC |-> B ) e. ( CC -cn-> CC ) ) |
18 |
3 16 16 17
|
mp3an2i |
|- ( ( ph /\ x e. CC ) -> ( z e. CC |-> B ) e. ( CC -cn-> CC ) ) |
19 |
|
eqidd |
|- ( z = x -> B = B ) |
20 |
18 8 19
|
cnmptlimc |
|- ( ( ph /\ x e. CC ) -> B e. ( ( z e. CC |-> B ) limCC x ) ) |
21 |
15 20
|
sselid |
|- ( ( ph /\ x e. CC ) -> B e. ( ( ( z e. CC |-> B ) |` ( CC \ { x } ) ) limCC x ) ) |
22 |
|
eldifsn |
|- ( z e. ( CC \ { x } ) <-> ( z e. CC /\ z =/= x ) ) |
23 |
2
|
3exp2 |
|- ( ph -> ( x e. CC -> ( z e. CC -> ( z =/= x -> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) = B ) ) ) ) |
24 |
23
|
imp43 |
|- ( ( ( ph /\ x e. CC ) /\ ( z e. CC /\ z =/= x ) ) -> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) = B ) |
25 |
22 24
|
sylan2b |
|- ( ( ( ph /\ x e. CC ) /\ z e. ( CC \ { x } ) ) -> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) = B ) |
26 |
25
|
mpteq2dva |
|- ( ( ph /\ x e. CC ) -> ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) = ( z e. ( CC \ { x } ) |-> B ) ) |
27 |
|
difss |
|- ( CC \ { x } ) C_ CC |
28 |
|
resmpt |
|- ( ( CC \ { x } ) C_ CC -> ( ( z e. CC |-> B ) |` ( CC \ { x } ) ) = ( z e. ( CC \ { x } ) |-> B ) ) |
29 |
27 28
|
ax-mp |
|- ( ( z e. CC |-> B ) |` ( CC \ { x } ) ) = ( z e. ( CC \ { x } ) |-> B ) |
30 |
26 29
|
eqtr4di |
|- ( ( ph /\ x e. CC ) -> ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) = ( ( z e. CC |-> B ) |` ( CC \ { x } ) ) ) |
31 |
30
|
oveq1d |
|- ( ( ph /\ x e. CC ) -> ( ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) = ( ( ( z e. CC |-> B ) |` ( CC \ { x } ) ) limCC x ) ) |
32 |
21 31
|
eleqtrrd |
|- ( ( ph /\ x e. CC ) -> B e. ( ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) |
33 |
9
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
34 |
33
|
toponrestid |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
35 |
|
eqid |
|- ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) = ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) |
36 |
1
|
adantr |
|- ( ( ph /\ x e. CC ) -> F : CC --> CC ) |
37 |
34 9 35 16 36 16
|
eldv |
|- ( ( ph /\ x e. CC ) -> ( x ( CC _D F ) B <-> ( x e. ( ( int ` ( TopOpen ` CCfld ) ) ` CC ) /\ B e. ( ( z e. ( CC \ { x } ) |-> ( ( ( F ` z ) - ( F ` x ) ) / ( z - x ) ) ) limCC x ) ) ) ) |
38 |
14 32 37
|
mpbir2and |
|- ( ( ph /\ x e. CC ) -> x ( CC _D F ) B ) |
39 |
|
releldm |
|- ( ( Rel ( CC _D F ) /\ x ( CC _D F ) B ) -> x e. dom ( CC _D F ) ) |
40 |
7 38 39
|
sylancr |
|- ( ( ph /\ x e. CC ) -> x e. dom ( CC _D F ) ) |
41 |
6 40
|
eqelssd |
|- ( ph -> dom ( CC _D F ) = CC ) |
42 |
41
|
feq2d |
|- ( ph -> ( ( CC _D F ) : dom ( CC _D F ) --> CC <-> ( CC _D F ) : CC --> CC ) ) |
43 |
4 42
|
mpbii |
|- ( ph -> ( CC _D F ) : CC --> CC ) |
44 |
43
|
ffnd |
|- ( ph -> ( CC _D F ) Fn CC ) |
45 |
|
fnconstg |
|- ( B e. CC -> ( CC X. { B } ) Fn CC ) |
46 |
3 45
|
mp1i |
|- ( ph -> ( CC X. { B } ) Fn CC ) |
47 |
|
ffun |
|- ( ( CC _D F ) : dom ( CC _D F ) --> CC -> Fun ( CC _D F ) ) |
48 |
4 47
|
mp1i |
|- ( ( ph /\ x e. CC ) -> Fun ( CC _D F ) ) |
49 |
|
funbrfvb |
|- ( ( Fun ( CC _D F ) /\ x e. dom ( CC _D F ) ) -> ( ( ( CC _D F ) ` x ) = B <-> x ( CC _D F ) B ) ) |
50 |
48 40 49
|
syl2anc |
|- ( ( ph /\ x e. CC ) -> ( ( ( CC _D F ) ` x ) = B <-> x ( CC _D F ) B ) ) |
51 |
38 50
|
mpbird |
|- ( ( ph /\ x e. CC ) -> ( ( CC _D F ) ` x ) = B ) |
52 |
3
|
a1i |
|- ( ph -> B e. CC ) |
53 |
|
fvconst2g |
|- ( ( B e. CC /\ x e. CC ) -> ( ( CC X. { B } ) ` x ) = B ) |
54 |
52 53
|
sylan |
|- ( ( ph /\ x e. CC ) -> ( ( CC X. { B } ) ` x ) = B ) |
55 |
51 54
|
eqtr4d |
|- ( ( ph /\ x e. CC ) -> ( ( CC _D F ) ` x ) = ( ( CC X. { B } ) ` x ) ) |
56 |
44 46 55
|
eqfnfvd |
|- ( ph -> ( CC _D F ) = ( CC X. { B } ) ) |