Metamath Proof Explorer


Theorem dvivth

Description: Darboux' theorem, or the intermediate value theorem for derivatives. A differentiable function's derivative satisfies the intermediate value property, even though it may not be continuous (so that ivthicc does not directly apply). (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypotheses dvivth.1
|- ( ph -> M e. ( A (,) B ) )
dvivth.2
|- ( ph -> N e. ( A (,) B ) )
dvivth.3
|- ( ph -> F e. ( ( A (,) B ) -cn-> RR ) )
dvivth.4
|- ( ph -> dom ( RR _D F ) = ( A (,) B ) )
Assertion dvivth
|- ( ph -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ ran ( RR _D F ) )

Proof

Step Hyp Ref Expression
1 dvivth.1
 |-  ( ph -> M e. ( A (,) B ) )
2 dvivth.2
 |-  ( ph -> N e. ( A (,) B ) )
3 dvivth.3
 |-  ( ph -> F e. ( ( A (,) B ) -cn-> RR ) )
4 dvivth.4
 |-  ( ph -> dom ( RR _D F ) = ( A (,) B ) )
5 1 adantr
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> M e. ( A (,) B ) )
6 2 adantr
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> N e. ( A (,) B ) )
7 cncff
 |-  ( F e. ( ( A (,) B ) -cn-> RR ) -> F : ( A (,) B ) --> RR )
8 3 7 syl
 |-  ( ph -> F : ( A (,) B ) --> RR )
9 8 ffvelrnda
 |-  ( ( ph /\ w e. ( A (,) B ) ) -> ( F ` w ) e. RR )
10 9 renegcld
 |-  ( ( ph /\ w e. ( A (,) B ) ) -> -u ( F ` w ) e. RR )
11 10 fmpttd
 |-  ( ph -> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) : ( A (,) B ) --> RR )
12 ax-resscn
 |-  RR C_ CC
13 ssid
 |-  CC C_ CC
14 cncfss
 |-  ( ( RR C_ CC /\ CC C_ CC ) -> ( ( A (,) B ) -cn-> RR ) C_ ( ( A (,) B ) -cn-> CC ) )
15 12 13 14 mp2an
 |-  ( ( A (,) B ) -cn-> RR ) C_ ( ( A (,) B ) -cn-> CC )
16 15 3 sselid
 |-  ( ph -> F e. ( ( A (,) B ) -cn-> CC ) )
17 eqid
 |-  ( w e. ( A (,) B ) |-> -u ( F ` w ) ) = ( w e. ( A (,) B ) |-> -u ( F ` w ) )
18 17 negfcncf
 |-  ( F e. ( ( A (,) B ) -cn-> CC ) -> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> CC ) )
19 16 18 syl
 |-  ( ph -> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> CC ) )
20 cncffvrn
 |-  ( ( RR C_ CC /\ ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> CC ) ) -> ( ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> RR ) <-> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) : ( A (,) B ) --> RR ) )
21 12 19 20 sylancr
 |-  ( ph -> ( ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> RR ) <-> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) : ( A (,) B ) --> RR ) )
22 11 21 mpbird
 |-  ( ph -> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> RR ) )
23 22 adantr
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> RR ) )
24 reelprrecn
 |-  RR e. { RR , CC }
25 24 a1i
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> RR e. { RR , CC } )
26 8 adantr
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> F : ( A (,) B ) --> RR )
27 26 ffvelrnda
 |-  ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> ( F ` w ) e. RR )
28 27 recnd
 |-  ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> ( F ` w ) e. CC )
29 fvexd
 |-  ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> ( ( RR _D F ) ` w ) e. _V )
30 26 feqmptd
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> F = ( w e. ( A (,) B ) |-> ( F ` w ) ) )
31 30 oveq2d
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( RR _D F ) = ( RR _D ( w e. ( A (,) B ) |-> ( F ` w ) ) ) )
32 ioossre
 |-  ( A (,) B ) C_ RR
33 dvfre
 |-  ( ( F : ( A (,) B ) --> RR /\ ( A (,) B ) C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR )
34 8 32 33 sylancl
 |-  ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR )
35 4 feq2d
 |-  ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> RR <-> ( RR _D F ) : ( A (,) B ) --> RR ) )
36 34 35 mpbid
 |-  ( ph -> ( RR _D F ) : ( A (,) B ) --> RR )
37 36 adantr
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( RR _D F ) : ( A (,) B ) --> RR )
38 37 feqmptd
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( RR _D F ) = ( w e. ( A (,) B ) |-> ( ( RR _D F ) ` w ) ) )
39 31 38 eqtr3d
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( RR _D ( w e. ( A (,) B ) |-> ( F ` w ) ) ) = ( w e. ( A (,) B ) |-> ( ( RR _D F ) ` w ) ) )
40 25 28 29 39 dvmptneg
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) = ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) )
41 40 dmeqd
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> dom ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) = dom ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) )
42 dmmptg
 |-  ( A. w e. ( A (,) B ) -u ( ( RR _D F ) ` w ) e. _V -> dom ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) = ( A (,) B ) )
43 negex
 |-  -u ( ( RR _D F ) ` w ) e. _V
44 43 a1i
 |-  ( w e. ( A (,) B ) -> -u ( ( RR _D F ) ` w ) e. _V )
45 42 44 mprg
 |-  dom ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) = ( A (,) B )
46 41 45 eqtrdi
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> dom ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) = ( A (,) B ) )
47 simprl
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> M < N )
48 simprr
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) )
49 36 1 ffvelrnd
 |-  ( ph -> ( ( RR _D F ) ` M ) e. RR )
50 49 adantr
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( RR _D F ) ` M ) e. RR )
51 2 4 eleqtrrd
 |-  ( ph -> N e. dom ( RR _D F ) )
52 34 51 ffvelrnd
 |-  ( ph -> ( ( RR _D F ) ` N ) e. RR )
53 52 adantr
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( RR _D F ) ` N ) e. RR )
54 iccssre
 |-  ( ( ( ( RR _D F ) ` M ) e. RR /\ ( ( RR _D F ) ` N ) e. RR ) -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ RR )
55 49 52 54 syl2anc
 |-  ( ph -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ RR )
56 55 adantr
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ RR )
57 56 48 sseldd
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> x e. RR )
58 iccneg
 |-  ( ( ( ( RR _D F ) ` M ) e. RR /\ ( ( RR _D F ) ` N ) e. RR /\ x e. RR ) -> ( x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) <-> -u x e. ( -u ( ( RR _D F ) ` N ) [,] -u ( ( RR _D F ) ` M ) ) ) )
59 50 53 57 58 syl3anc
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) <-> -u x e. ( -u ( ( RR _D F ) ` N ) [,] -u ( ( RR _D F ) ` M ) ) ) )
60 48 59 mpbid
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> -u x e. ( -u ( ( RR _D F ) ` N ) [,] -u ( ( RR _D F ) ` M ) ) )
61 40 fveq1d
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` N ) = ( ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ` N ) )
62 fveq2
 |-  ( w = N -> ( ( RR _D F ) ` w ) = ( ( RR _D F ) ` N ) )
63 62 negeqd
 |-  ( w = N -> -u ( ( RR _D F ) ` w ) = -u ( ( RR _D F ) ` N ) )
64 eqid
 |-  ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) = ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) )
65 negex
 |-  -u ( ( RR _D F ) ` N ) e. _V
66 63 64 65 fvmpt
 |-  ( N e. ( A (,) B ) -> ( ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ` N ) = -u ( ( RR _D F ) ` N ) )
67 6 66 syl
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ` N ) = -u ( ( RR _D F ) ` N ) )
68 61 67 eqtrd
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` N ) = -u ( ( RR _D F ) ` N ) )
69 40 fveq1d
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` M ) = ( ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ` M ) )
70 fveq2
 |-  ( w = M -> ( ( RR _D F ) ` w ) = ( ( RR _D F ) ` M ) )
71 70 negeqd
 |-  ( w = M -> -u ( ( RR _D F ) ` w ) = -u ( ( RR _D F ) ` M ) )
72 negex
 |-  -u ( ( RR _D F ) ` M ) e. _V
73 71 64 72 fvmpt
 |-  ( M e. ( A (,) B ) -> ( ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ` M ) = -u ( ( RR _D F ) ` M ) )
74 5 73 syl
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ` M ) = -u ( ( RR _D F ) ` M ) )
75 69 74 eqtrd
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` M ) = -u ( ( RR _D F ) ` M ) )
76 68 75 oveq12d
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` N ) [,] ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` M ) ) = ( -u ( ( RR _D F ) ` N ) [,] -u ( ( RR _D F ) ` M ) ) )
77 60 76 eleqtrrd
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> -u x e. ( ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` N ) [,] ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` M ) ) )
78 eqid
 |-  ( y e. ( A (,) B ) |-> ( ( ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ` y ) - ( -u x x. y ) ) ) = ( y e. ( A (,) B ) |-> ( ( ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ` y ) - ( -u x x. y ) ) )
79 5 6 23 46 47 77 78 dvivthlem2
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> -u x e. ran ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) )
80 40 rneqd
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ran ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) = ran ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) )
81 79 80 eleqtrd
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> -u x e. ran ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) )
82 negex
 |-  -u x e. _V
83 64 elrnmpt
 |-  ( -u x e. _V -> ( -u x e. ran ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) <-> E. w e. ( A (,) B ) -u x = -u ( ( RR _D F ) ` w ) ) )
84 82 83 ax-mp
 |-  ( -u x e. ran ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) <-> E. w e. ( A (,) B ) -u x = -u ( ( RR _D F ) ` w ) )
85 81 84 sylib
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> E. w e. ( A (,) B ) -u x = -u ( ( RR _D F ) ` w ) )
86 57 recnd
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> x e. CC )
87 86 adantr
 |-  ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> x e. CC )
88 25 28 29 39 dvmptcl
 |-  ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> ( ( RR _D F ) ` w ) e. CC )
89 87 88 neg11ad
 |-  ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> ( -u x = -u ( ( RR _D F ) ` w ) <-> x = ( ( RR _D F ) ` w ) ) )
90 eqcom
 |-  ( x = ( ( RR _D F ) ` w ) <-> ( ( RR _D F ) ` w ) = x )
91 89 90 bitrdi
 |-  ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> ( -u x = -u ( ( RR _D F ) ` w ) <-> ( ( RR _D F ) ` w ) = x ) )
92 91 rexbidva
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( E. w e. ( A (,) B ) -u x = -u ( ( RR _D F ) ` w ) <-> E. w e. ( A (,) B ) ( ( RR _D F ) ` w ) = x ) )
93 85 92 mpbid
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> E. w e. ( A (,) B ) ( ( RR _D F ) ` w ) = x )
94 37 ffnd
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( RR _D F ) Fn ( A (,) B ) )
95 fvelrnb
 |-  ( ( RR _D F ) Fn ( A (,) B ) -> ( x e. ran ( RR _D F ) <-> E. w e. ( A (,) B ) ( ( RR _D F ) ` w ) = x ) )
96 94 95 syl
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( x e. ran ( RR _D F ) <-> E. w e. ( A (,) B ) ( ( RR _D F ) ` w ) = x ) )
97 93 96 mpbird
 |-  ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> x e. ran ( RR _D F ) )
98 97 expr
 |-  ( ( ph /\ M < N ) -> ( x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) -> x e. ran ( RR _D F ) ) )
99 98 ssrdv
 |-  ( ( ph /\ M < N ) -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ ran ( RR _D F ) )
100 fveq2
 |-  ( M = N -> ( ( RR _D F ) ` M ) = ( ( RR _D F ) ` N ) )
101 100 oveq1d
 |-  ( M = N -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) = ( ( ( RR _D F ) ` N ) [,] ( ( RR _D F ) ` N ) ) )
102 52 rexrd
 |-  ( ph -> ( ( RR _D F ) ` N ) e. RR* )
103 iccid
 |-  ( ( ( RR _D F ) ` N ) e. RR* -> ( ( ( RR _D F ) ` N ) [,] ( ( RR _D F ) ` N ) ) = { ( ( RR _D F ) ` N ) } )
104 102 103 syl
 |-  ( ph -> ( ( ( RR _D F ) ` N ) [,] ( ( RR _D F ) ` N ) ) = { ( ( RR _D F ) ` N ) } )
105 101 104 sylan9eqr
 |-  ( ( ph /\ M = N ) -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) = { ( ( RR _D F ) ` N ) } )
106 34 ffnd
 |-  ( ph -> ( RR _D F ) Fn dom ( RR _D F ) )
107 fnfvelrn
 |-  ( ( ( RR _D F ) Fn dom ( RR _D F ) /\ N e. dom ( RR _D F ) ) -> ( ( RR _D F ) ` N ) e. ran ( RR _D F ) )
108 106 51 107 syl2anc
 |-  ( ph -> ( ( RR _D F ) ` N ) e. ran ( RR _D F ) )
109 108 snssd
 |-  ( ph -> { ( ( RR _D F ) ` N ) } C_ ran ( RR _D F ) )
110 109 adantr
 |-  ( ( ph /\ M = N ) -> { ( ( RR _D F ) ` N ) } C_ ran ( RR _D F ) )
111 105 110 eqsstrd
 |-  ( ( ph /\ M = N ) -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ ran ( RR _D F ) )
112 2 adantr
 |-  ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> N e. ( A (,) B ) )
113 1 adantr
 |-  ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> M e. ( A (,) B ) )
114 3 adantr
 |-  ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> F e. ( ( A (,) B ) -cn-> RR ) )
115 4 adantr
 |-  ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> dom ( RR _D F ) = ( A (,) B ) )
116 simprl
 |-  ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> N < M )
117 simprr
 |-  ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) )
118 eqid
 |-  ( y e. ( A (,) B ) |-> ( ( F ` y ) - ( x x. y ) ) ) = ( y e. ( A (,) B ) |-> ( ( F ` y ) - ( x x. y ) ) )
119 112 113 114 115 116 117 118 dvivthlem2
 |-  ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> x e. ran ( RR _D F ) )
120 119 expr
 |-  ( ( ph /\ N < M ) -> ( x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) -> x e. ran ( RR _D F ) ) )
121 120 ssrdv
 |-  ( ( ph /\ N < M ) -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ ran ( RR _D F ) )
122 32 1 sselid
 |-  ( ph -> M e. RR )
123 32 2 sselid
 |-  ( ph -> N e. RR )
124 122 123 lttri4d
 |-  ( ph -> ( M < N \/ M = N \/ N < M ) )
125 99 111 121 124 mpjao3dan
 |-  ( ph -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ ran ( RR _D F ) )