Step |
Hyp |
Ref |
Expression |
1 |
|
dvivth.1 |
|- ( ph -> M e. ( A (,) B ) ) |
2 |
|
dvivth.2 |
|- ( ph -> N e. ( A (,) B ) ) |
3 |
|
dvivth.3 |
|- ( ph -> F e. ( ( A (,) B ) -cn-> RR ) ) |
4 |
|
dvivth.4 |
|- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
5 |
1
|
adantr |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> M e. ( A (,) B ) ) |
6 |
2
|
adantr |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> N e. ( A (,) B ) ) |
7 |
|
cncff |
|- ( F e. ( ( A (,) B ) -cn-> RR ) -> F : ( A (,) B ) --> RR ) |
8 |
3 7
|
syl |
|- ( ph -> F : ( A (,) B ) --> RR ) |
9 |
8
|
ffvelrnda |
|- ( ( ph /\ w e. ( A (,) B ) ) -> ( F ` w ) e. RR ) |
10 |
9
|
renegcld |
|- ( ( ph /\ w e. ( A (,) B ) ) -> -u ( F ` w ) e. RR ) |
11 |
10
|
fmpttd |
|- ( ph -> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) : ( A (,) B ) --> RR ) |
12 |
|
ax-resscn |
|- RR C_ CC |
13 |
|
ssid |
|- CC C_ CC |
14 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( ( A (,) B ) -cn-> RR ) C_ ( ( A (,) B ) -cn-> CC ) ) |
15 |
12 13 14
|
mp2an |
|- ( ( A (,) B ) -cn-> RR ) C_ ( ( A (,) B ) -cn-> CC ) |
16 |
15 3
|
sselid |
|- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
17 |
|
eqid |
|- ( w e. ( A (,) B ) |-> -u ( F ` w ) ) = ( w e. ( A (,) B ) |-> -u ( F ` w ) ) |
18 |
17
|
negfcncf |
|- ( F e. ( ( A (,) B ) -cn-> CC ) -> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
19 |
16 18
|
syl |
|- ( ph -> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
20 |
|
cncffvrn |
|- ( ( RR C_ CC /\ ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> CC ) ) -> ( ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> RR ) <-> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) : ( A (,) B ) --> RR ) ) |
21 |
12 19 20
|
sylancr |
|- ( ph -> ( ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> RR ) <-> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) : ( A (,) B ) --> RR ) ) |
22 |
11 21
|
mpbird |
|- ( ph -> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> RR ) ) |
23 |
22
|
adantr |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( w e. ( A (,) B ) |-> -u ( F ` w ) ) e. ( ( A (,) B ) -cn-> RR ) ) |
24 |
|
reelprrecn |
|- RR e. { RR , CC } |
25 |
24
|
a1i |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> RR e. { RR , CC } ) |
26 |
8
|
adantr |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> F : ( A (,) B ) --> RR ) |
27 |
26
|
ffvelrnda |
|- ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> ( F ` w ) e. RR ) |
28 |
27
|
recnd |
|- ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> ( F ` w ) e. CC ) |
29 |
|
fvexd |
|- ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> ( ( RR _D F ) ` w ) e. _V ) |
30 |
26
|
feqmptd |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> F = ( w e. ( A (,) B ) |-> ( F ` w ) ) ) |
31 |
30
|
oveq2d |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( RR _D F ) = ( RR _D ( w e. ( A (,) B ) |-> ( F ` w ) ) ) ) |
32 |
|
ioossre |
|- ( A (,) B ) C_ RR |
33 |
|
dvfre |
|- ( ( F : ( A (,) B ) --> RR /\ ( A (,) B ) C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
34 |
8 32 33
|
sylancl |
|- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
35 |
4
|
feq2d |
|- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> RR <-> ( RR _D F ) : ( A (,) B ) --> RR ) ) |
36 |
34 35
|
mpbid |
|- ( ph -> ( RR _D F ) : ( A (,) B ) --> RR ) |
37 |
36
|
adantr |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( RR _D F ) : ( A (,) B ) --> RR ) |
38 |
37
|
feqmptd |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( RR _D F ) = ( w e. ( A (,) B ) |-> ( ( RR _D F ) ` w ) ) ) |
39 |
31 38
|
eqtr3d |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( RR _D ( w e. ( A (,) B ) |-> ( F ` w ) ) ) = ( w e. ( A (,) B ) |-> ( ( RR _D F ) ` w ) ) ) |
40 |
25 28 29 39
|
dvmptneg |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) = ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ) |
41 |
40
|
dmeqd |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> dom ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) = dom ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ) |
42 |
|
dmmptg |
|- ( A. w e. ( A (,) B ) -u ( ( RR _D F ) ` w ) e. _V -> dom ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) = ( A (,) B ) ) |
43 |
|
negex |
|- -u ( ( RR _D F ) ` w ) e. _V |
44 |
43
|
a1i |
|- ( w e. ( A (,) B ) -> -u ( ( RR _D F ) ` w ) e. _V ) |
45 |
42 44
|
mprg |
|- dom ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) = ( A (,) B ) |
46 |
41 45
|
eqtrdi |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> dom ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) = ( A (,) B ) ) |
47 |
|
simprl |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> M < N ) |
48 |
|
simprr |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) |
49 |
36 1
|
ffvelrnd |
|- ( ph -> ( ( RR _D F ) ` M ) e. RR ) |
50 |
49
|
adantr |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( RR _D F ) ` M ) e. RR ) |
51 |
2 4
|
eleqtrrd |
|- ( ph -> N e. dom ( RR _D F ) ) |
52 |
34 51
|
ffvelrnd |
|- ( ph -> ( ( RR _D F ) ` N ) e. RR ) |
53 |
52
|
adantr |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( RR _D F ) ` N ) e. RR ) |
54 |
|
iccssre |
|- ( ( ( ( RR _D F ) ` M ) e. RR /\ ( ( RR _D F ) ` N ) e. RR ) -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ RR ) |
55 |
49 52 54
|
syl2anc |
|- ( ph -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ RR ) |
56 |
55
|
adantr |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ RR ) |
57 |
56 48
|
sseldd |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> x e. RR ) |
58 |
|
iccneg |
|- ( ( ( ( RR _D F ) ` M ) e. RR /\ ( ( RR _D F ) ` N ) e. RR /\ x e. RR ) -> ( x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) <-> -u x e. ( -u ( ( RR _D F ) ` N ) [,] -u ( ( RR _D F ) ` M ) ) ) ) |
59 |
50 53 57 58
|
syl3anc |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) <-> -u x e. ( -u ( ( RR _D F ) ` N ) [,] -u ( ( RR _D F ) ` M ) ) ) ) |
60 |
48 59
|
mpbid |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> -u x e. ( -u ( ( RR _D F ) ` N ) [,] -u ( ( RR _D F ) ` M ) ) ) |
61 |
40
|
fveq1d |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` N ) = ( ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ` N ) ) |
62 |
|
fveq2 |
|- ( w = N -> ( ( RR _D F ) ` w ) = ( ( RR _D F ) ` N ) ) |
63 |
62
|
negeqd |
|- ( w = N -> -u ( ( RR _D F ) ` w ) = -u ( ( RR _D F ) ` N ) ) |
64 |
|
eqid |
|- ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) = ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) |
65 |
|
negex |
|- -u ( ( RR _D F ) ` N ) e. _V |
66 |
63 64 65
|
fvmpt |
|- ( N e. ( A (,) B ) -> ( ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ` N ) = -u ( ( RR _D F ) ` N ) ) |
67 |
6 66
|
syl |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ` N ) = -u ( ( RR _D F ) ` N ) ) |
68 |
61 67
|
eqtrd |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` N ) = -u ( ( RR _D F ) ` N ) ) |
69 |
40
|
fveq1d |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` M ) = ( ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ` M ) ) |
70 |
|
fveq2 |
|- ( w = M -> ( ( RR _D F ) ` w ) = ( ( RR _D F ) ` M ) ) |
71 |
70
|
negeqd |
|- ( w = M -> -u ( ( RR _D F ) ` w ) = -u ( ( RR _D F ) ` M ) ) |
72 |
|
negex |
|- -u ( ( RR _D F ) ` M ) e. _V |
73 |
71 64 72
|
fvmpt |
|- ( M e. ( A (,) B ) -> ( ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ` M ) = -u ( ( RR _D F ) ` M ) ) |
74 |
5 73
|
syl |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ` M ) = -u ( ( RR _D F ) ` M ) ) |
75 |
69 74
|
eqtrd |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` M ) = -u ( ( RR _D F ) ` M ) ) |
76 |
68 75
|
oveq12d |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` N ) [,] ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` M ) ) = ( -u ( ( RR _D F ) ` N ) [,] -u ( ( RR _D F ) ` M ) ) ) |
77 |
60 76
|
eleqtrrd |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> -u x e. ( ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` N ) [,] ( ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ` M ) ) ) |
78 |
|
eqid |
|- ( y e. ( A (,) B ) |-> ( ( ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ` y ) - ( -u x x. y ) ) ) = ( y e. ( A (,) B ) |-> ( ( ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ` y ) - ( -u x x. y ) ) ) |
79 |
5 6 23 46 47 77 78
|
dvivthlem2 |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> -u x e. ran ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) ) |
80 |
40
|
rneqd |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ran ( RR _D ( w e. ( A (,) B ) |-> -u ( F ` w ) ) ) = ran ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ) |
81 |
79 80
|
eleqtrd |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> -u x e. ran ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) ) |
82 |
|
negex |
|- -u x e. _V |
83 |
64
|
elrnmpt |
|- ( -u x e. _V -> ( -u x e. ran ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) <-> E. w e. ( A (,) B ) -u x = -u ( ( RR _D F ) ` w ) ) ) |
84 |
82 83
|
ax-mp |
|- ( -u x e. ran ( w e. ( A (,) B ) |-> -u ( ( RR _D F ) ` w ) ) <-> E. w e. ( A (,) B ) -u x = -u ( ( RR _D F ) ` w ) ) |
85 |
81 84
|
sylib |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> E. w e. ( A (,) B ) -u x = -u ( ( RR _D F ) ` w ) ) |
86 |
57
|
recnd |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> x e. CC ) |
87 |
86
|
adantr |
|- ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> x e. CC ) |
88 |
25 28 29 39
|
dvmptcl |
|- ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> ( ( RR _D F ) ` w ) e. CC ) |
89 |
87 88
|
neg11ad |
|- ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> ( -u x = -u ( ( RR _D F ) ` w ) <-> x = ( ( RR _D F ) ` w ) ) ) |
90 |
|
eqcom |
|- ( x = ( ( RR _D F ) ` w ) <-> ( ( RR _D F ) ` w ) = x ) |
91 |
89 90
|
bitrdi |
|- ( ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) /\ w e. ( A (,) B ) ) -> ( -u x = -u ( ( RR _D F ) ` w ) <-> ( ( RR _D F ) ` w ) = x ) ) |
92 |
91
|
rexbidva |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( E. w e. ( A (,) B ) -u x = -u ( ( RR _D F ) ` w ) <-> E. w e. ( A (,) B ) ( ( RR _D F ) ` w ) = x ) ) |
93 |
85 92
|
mpbid |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> E. w e. ( A (,) B ) ( ( RR _D F ) ` w ) = x ) |
94 |
37
|
ffnd |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( RR _D F ) Fn ( A (,) B ) ) |
95 |
|
fvelrnb |
|- ( ( RR _D F ) Fn ( A (,) B ) -> ( x e. ran ( RR _D F ) <-> E. w e. ( A (,) B ) ( ( RR _D F ) ` w ) = x ) ) |
96 |
94 95
|
syl |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> ( x e. ran ( RR _D F ) <-> E. w e. ( A (,) B ) ( ( RR _D F ) ` w ) = x ) ) |
97 |
93 96
|
mpbird |
|- ( ( ph /\ ( M < N /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> x e. ran ( RR _D F ) ) |
98 |
97
|
expr |
|- ( ( ph /\ M < N ) -> ( x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) -> x e. ran ( RR _D F ) ) ) |
99 |
98
|
ssrdv |
|- ( ( ph /\ M < N ) -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ ran ( RR _D F ) ) |
100 |
|
fveq2 |
|- ( M = N -> ( ( RR _D F ) ` M ) = ( ( RR _D F ) ` N ) ) |
101 |
100
|
oveq1d |
|- ( M = N -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) = ( ( ( RR _D F ) ` N ) [,] ( ( RR _D F ) ` N ) ) ) |
102 |
52
|
rexrd |
|- ( ph -> ( ( RR _D F ) ` N ) e. RR* ) |
103 |
|
iccid |
|- ( ( ( RR _D F ) ` N ) e. RR* -> ( ( ( RR _D F ) ` N ) [,] ( ( RR _D F ) ` N ) ) = { ( ( RR _D F ) ` N ) } ) |
104 |
102 103
|
syl |
|- ( ph -> ( ( ( RR _D F ) ` N ) [,] ( ( RR _D F ) ` N ) ) = { ( ( RR _D F ) ` N ) } ) |
105 |
101 104
|
sylan9eqr |
|- ( ( ph /\ M = N ) -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) = { ( ( RR _D F ) ` N ) } ) |
106 |
34
|
ffnd |
|- ( ph -> ( RR _D F ) Fn dom ( RR _D F ) ) |
107 |
|
fnfvelrn |
|- ( ( ( RR _D F ) Fn dom ( RR _D F ) /\ N e. dom ( RR _D F ) ) -> ( ( RR _D F ) ` N ) e. ran ( RR _D F ) ) |
108 |
106 51 107
|
syl2anc |
|- ( ph -> ( ( RR _D F ) ` N ) e. ran ( RR _D F ) ) |
109 |
108
|
snssd |
|- ( ph -> { ( ( RR _D F ) ` N ) } C_ ran ( RR _D F ) ) |
110 |
109
|
adantr |
|- ( ( ph /\ M = N ) -> { ( ( RR _D F ) ` N ) } C_ ran ( RR _D F ) ) |
111 |
105 110
|
eqsstrd |
|- ( ( ph /\ M = N ) -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ ran ( RR _D F ) ) |
112 |
2
|
adantr |
|- ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> N e. ( A (,) B ) ) |
113 |
1
|
adantr |
|- ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> M e. ( A (,) B ) ) |
114 |
3
|
adantr |
|- ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> F e. ( ( A (,) B ) -cn-> RR ) ) |
115 |
4
|
adantr |
|- ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> dom ( RR _D F ) = ( A (,) B ) ) |
116 |
|
simprl |
|- ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> N < M ) |
117 |
|
simprr |
|- ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) |
118 |
|
eqid |
|- ( y e. ( A (,) B ) |-> ( ( F ` y ) - ( x x. y ) ) ) = ( y e. ( A (,) B ) |-> ( ( F ` y ) - ( x x. y ) ) ) |
119 |
112 113 114 115 116 117 118
|
dvivthlem2 |
|- ( ( ph /\ ( N < M /\ x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) ) ) -> x e. ran ( RR _D F ) ) |
120 |
119
|
expr |
|- ( ( ph /\ N < M ) -> ( x e. ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) -> x e. ran ( RR _D F ) ) ) |
121 |
120
|
ssrdv |
|- ( ( ph /\ N < M ) -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ ran ( RR _D F ) ) |
122 |
32 1
|
sselid |
|- ( ph -> M e. RR ) |
123 |
32 2
|
sselid |
|- ( ph -> N e. RR ) |
124 |
122 123
|
lttri4d |
|- ( ph -> ( M < N \/ M = N \/ N < M ) ) |
125 |
99 111 121 124
|
mpjao3dan |
|- ( ph -> ( ( ( RR _D F ) ` M ) [,] ( ( RR _D F ) ` N ) ) C_ ran ( RR _D F ) ) |