Step |
Hyp |
Ref |
Expression |
1 |
|
dvle.m |
|- ( ph -> M e. RR ) |
2 |
|
dvle.n |
|- ( ph -> N e. RR ) |
3 |
|
dvle.a |
|- ( ph -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) ) |
4 |
|
dvle.b |
|- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) |
5 |
|
dvle.c |
|- ( ph -> ( x e. ( M [,] N ) |-> C ) e. ( ( M [,] N ) -cn-> RR ) ) |
6 |
|
dvle.d |
|- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> C ) ) = ( x e. ( M (,) N ) |-> D ) ) |
7 |
|
dvle.f |
|- ( ( ph /\ x e. ( M (,) N ) ) -> B <_ D ) |
8 |
|
dvle.x |
|- ( ph -> X e. ( M [,] N ) ) |
9 |
|
dvle.y |
|- ( ph -> Y e. ( M [,] N ) ) |
10 |
|
dvle.l |
|- ( ph -> X <_ Y ) |
11 |
|
dvle.p |
|- ( x = X -> A = P ) |
12 |
|
dvle.q |
|- ( x = X -> C = Q ) |
13 |
|
dvle.r |
|- ( x = Y -> A = R ) |
14 |
|
dvle.s |
|- ( x = Y -> C = S ) |
15 |
13
|
eleq1d |
|- ( x = Y -> ( A e. RR <-> R e. RR ) ) |
16 |
|
cncff |
|- ( ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
17 |
3 16
|
syl |
|- ( ph -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
18 |
|
eqid |
|- ( x e. ( M [,] N ) |-> A ) = ( x e. ( M [,] N ) |-> A ) |
19 |
18
|
fmpt |
|- ( A. x e. ( M [,] N ) A e. RR <-> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
20 |
17 19
|
sylibr |
|- ( ph -> A. x e. ( M [,] N ) A e. RR ) |
21 |
15 20 9
|
rspcdva |
|- ( ph -> R e. RR ) |
22 |
14
|
eleq1d |
|- ( x = Y -> ( C e. RR <-> S e. RR ) ) |
23 |
|
cncff |
|- ( ( x e. ( M [,] N ) |-> C ) e. ( ( M [,] N ) -cn-> RR ) -> ( x e. ( M [,] N ) |-> C ) : ( M [,] N ) --> RR ) |
24 |
5 23
|
syl |
|- ( ph -> ( x e. ( M [,] N ) |-> C ) : ( M [,] N ) --> RR ) |
25 |
|
eqid |
|- ( x e. ( M [,] N ) |-> C ) = ( x e. ( M [,] N ) |-> C ) |
26 |
25
|
fmpt |
|- ( A. x e. ( M [,] N ) C e. RR <-> ( x e. ( M [,] N ) |-> C ) : ( M [,] N ) --> RR ) |
27 |
24 26
|
sylibr |
|- ( ph -> A. x e. ( M [,] N ) C e. RR ) |
28 |
22 27 9
|
rspcdva |
|- ( ph -> S e. RR ) |
29 |
12
|
eleq1d |
|- ( x = X -> ( C e. RR <-> Q e. RR ) ) |
30 |
29 27 8
|
rspcdva |
|- ( ph -> Q e. RR ) |
31 |
28 30
|
resubcld |
|- ( ph -> ( S - Q ) e. RR ) |
32 |
11
|
eleq1d |
|- ( x = X -> ( A e. RR <-> P e. RR ) ) |
33 |
32 20 8
|
rspcdva |
|- ( ph -> P e. RR ) |
34 |
21
|
recnd |
|- ( ph -> R e. CC ) |
35 |
30
|
recnd |
|- ( ph -> Q e. CC ) |
36 |
28
|
recnd |
|- ( ph -> S e. CC ) |
37 |
35 36
|
subcld |
|- ( ph -> ( Q - S ) e. CC ) |
38 |
34 37
|
addcomd |
|- ( ph -> ( R + ( Q - S ) ) = ( ( Q - S ) + R ) ) |
39 |
34 36 35
|
subsub2d |
|- ( ph -> ( R - ( S - Q ) ) = ( R + ( Q - S ) ) ) |
40 |
35 36 34
|
subsubd |
|- ( ph -> ( Q - ( S - R ) ) = ( ( Q - S ) + R ) ) |
41 |
38 39 40
|
3eqtr4d |
|- ( ph -> ( R - ( S - Q ) ) = ( Q - ( S - R ) ) ) |
42 |
28 21
|
resubcld |
|- ( ph -> ( S - R ) e. RR ) |
43 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
44 |
43
|
subcn |
|- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
45 |
|
ax-resscn |
|- RR C_ CC |
46 |
|
resubcl |
|- ( ( C e. RR /\ A e. RR ) -> ( C - A ) e. RR ) |
47 |
43 44 5 3 45 46
|
cncfmpt2ss |
|- ( ph -> ( x e. ( M [,] N ) |-> ( C - A ) ) e. ( ( M [,] N ) -cn-> RR ) ) |
48 |
45
|
a1i |
|- ( ph -> RR C_ CC ) |
49 |
|
iccssre |
|- ( ( M e. RR /\ N e. RR ) -> ( M [,] N ) C_ RR ) |
50 |
1 2 49
|
syl2anc |
|- ( ph -> ( M [,] N ) C_ RR ) |
51 |
24
|
fvmptelrn |
|- ( ( ph /\ x e. ( M [,] N ) ) -> C e. RR ) |
52 |
17
|
fvmptelrn |
|- ( ( ph /\ x e. ( M [,] N ) ) -> A e. RR ) |
53 |
51 52
|
resubcld |
|- ( ( ph /\ x e. ( M [,] N ) ) -> ( C - A ) e. RR ) |
54 |
53
|
recnd |
|- ( ( ph /\ x e. ( M [,] N ) ) -> ( C - A ) e. CC ) |
55 |
43
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
56 |
|
iccntr |
|- ( ( M e. RR /\ N e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( M [,] N ) ) = ( M (,) N ) ) |
57 |
1 2 56
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( M [,] N ) ) = ( M (,) N ) ) |
58 |
48 50 54 55 43 57
|
dvmptntr |
|- ( ph -> ( RR _D ( x e. ( M [,] N ) |-> ( C - A ) ) ) = ( RR _D ( x e. ( M (,) N ) |-> ( C - A ) ) ) ) |
59 |
|
reelprrecn |
|- RR e. { RR , CC } |
60 |
59
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
61 |
|
ioossicc |
|- ( M (,) N ) C_ ( M [,] N ) |
62 |
61
|
sseli |
|- ( x e. ( M (,) N ) -> x e. ( M [,] N ) ) |
63 |
51
|
recnd |
|- ( ( ph /\ x e. ( M [,] N ) ) -> C e. CC ) |
64 |
62 63
|
sylan2 |
|- ( ( ph /\ x e. ( M (,) N ) ) -> C e. CC ) |
65 |
|
lerel |
|- Rel <_ |
66 |
65
|
brrelex2i |
|- ( B <_ D -> D e. _V ) |
67 |
7 66
|
syl |
|- ( ( ph /\ x e. ( M (,) N ) ) -> D e. _V ) |
68 |
52
|
recnd |
|- ( ( ph /\ x e. ( M [,] N ) ) -> A e. CC ) |
69 |
62 68
|
sylan2 |
|- ( ( ph /\ x e. ( M (,) N ) ) -> A e. CC ) |
70 |
65
|
brrelex1i |
|- ( B <_ D -> B e. _V ) |
71 |
7 70
|
syl |
|- ( ( ph /\ x e. ( M (,) N ) ) -> B e. _V ) |
72 |
60 64 67 6 69 71 4
|
dvmptsub |
|- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> ( C - A ) ) ) = ( x e. ( M (,) N ) |-> ( D - B ) ) ) |
73 |
58 72
|
eqtrd |
|- ( ph -> ( RR _D ( x e. ( M [,] N ) |-> ( C - A ) ) ) = ( x e. ( M (,) N ) |-> ( D - B ) ) ) |
74 |
62 51
|
sylan2 |
|- ( ( ph /\ x e. ( M (,) N ) ) -> C e. RR ) |
75 |
74
|
fmpttd |
|- ( ph -> ( x e. ( M (,) N ) |-> C ) : ( M (,) N ) --> RR ) |
76 |
|
ioossre |
|- ( M (,) N ) C_ RR |
77 |
|
dvfre |
|- ( ( ( x e. ( M (,) N ) |-> C ) : ( M (,) N ) --> RR /\ ( M (,) N ) C_ RR ) -> ( RR _D ( x e. ( M (,) N ) |-> C ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> C ) ) --> RR ) |
78 |
75 76 77
|
sylancl |
|- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> C ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> C ) ) --> RR ) |
79 |
6
|
dmeqd |
|- ( ph -> dom ( RR _D ( x e. ( M (,) N ) |-> C ) ) = dom ( x e. ( M (,) N ) |-> D ) ) |
80 |
67
|
ralrimiva |
|- ( ph -> A. x e. ( M (,) N ) D e. _V ) |
81 |
|
dmmptg |
|- ( A. x e. ( M (,) N ) D e. _V -> dom ( x e. ( M (,) N ) |-> D ) = ( M (,) N ) ) |
82 |
80 81
|
syl |
|- ( ph -> dom ( x e. ( M (,) N ) |-> D ) = ( M (,) N ) ) |
83 |
79 82
|
eqtrd |
|- ( ph -> dom ( RR _D ( x e. ( M (,) N ) |-> C ) ) = ( M (,) N ) ) |
84 |
6 83
|
feq12d |
|- ( ph -> ( ( RR _D ( x e. ( M (,) N ) |-> C ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> C ) ) --> RR <-> ( x e. ( M (,) N ) |-> D ) : ( M (,) N ) --> RR ) ) |
85 |
78 84
|
mpbid |
|- ( ph -> ( x e. ( M (,) N ) |-> D ) : ( M (,) N ) --> RR ) |
86 |
85
|
fvmptelrn |
|- ( ( ph /\ x e. ( M (,) N ) ) -> D e. RR ) |
87 |
62 52
|
sylan2 |
|- ( ( ph /\ x e. ( M (,) N ) ) -> A e. RR ) |
88 |
87
|
fmpttd |
|- ( ph -> ( x e. ( M (,) N ) |-> A ) : ( M (,) N ) --> RR ) |
89 |
|
dvfre |
|- ( ( ( x e. ( M (,) N ) |-> A ) : ( M (,) N ) --> RR /\ ( M (,) N ) C_ RR ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR ) |
90 |
88 76 89
|
sylancl |
|- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR ) |
91 |
4
|
dmeqd |
|- ( ph -> dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) = dom ( x e. ( M (,) N ) |-> B ) ) |
92 |
71
|
ralrimiva |
|- ( ph -> A. x e. ( M (,) N ) B e. _V ) |
93 |
|
dmmptg |
|- ( A. x e. ( M (,) N ) B e. _V -> dom ( x e. ( M (,) N ) |-> B ) = ( M (,) N ) ) |
94 |
92 93
|
syl |
|- ( ph -> dom ( x e. ( M (,) N ) |-> B ) = ( M (,) N ) ) |
95 |
91 94
|
eqtrd |
|- ( ph -> dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( M (,) N ) ) |
96 |
4 95
|
feq12d |
|- ( ph -> ( ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR <-> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) ) |
97 |
90 96
|
mpbid |
|- ( ph -> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) |
98 |
97
|
fvmptelrn |
|- ( ( ph /\ x e. ( M (,) N ) ) -> B e. RR ) |
99 |
86 98
|
resubcld |
|- ( ( ph /\ x e. ( M (,) N ) ) -> ( D - B ) e. RR ) |
100 |
86 98
|
subge0d |
|- ( ( ph /\ x e. ( M (,) N ) ) -> ( 0 <_ ( D - B ) <-> B <_ D ) ) |
101 |
7 100
|
mpbird |
|- ( ( ph /\ x e. ( M (,) N ) ) -> 0 <_ ( D - B ) ) |
102 |
|
elrege0 |
|- ( ( D - B ) e. ( 0 [,) +oo ) <-> ( ( D - B ) e. RR /\ 0 <_ ( D - B ) ) ) |
103 |
99 101 102
|
sylanbrc |
|- ( ( ph /\ x e. ( M (,) N ) ) -> ( D - B ) e. ( 0 [,) +oo ) ) |
104 |
73 103
|
fmpt3d |
|- ( ph -> ( RR _D ( x e. ( M [,] N ) |-> ( C - A ) ) ) : ( M (,) N ) --> ( 0 [,) +oo ) ) |
105 |
1 2 47 104 8 9 10
|
dvge0 |
|- ( ph -> ( ( x e. ( M [,] N ) |-> ( C - A ) ) ` X ) <_ ( ( x e. ( M [,] N ) |-> ( C - A ) ) ` Y ) ) |
106 |
12 11
|
oveq12d |
|- ( x = X -> ( C - A ) = ( Q - P ) ) |
107 |
|
eqid |
|- ( x e. ( M [,] N ) |-> ( C - A ) ) = ( x e. ( M [,] N ) |-> ( C - A ) ) |
108 |
|
ovex |
|- ( C - A ) e. _V |
109 |
106 107 108
|
fvmpt3i |
|- ( X e. ( M [,] N ) -> ( ( x e. ( M [,] N ) |-> ( C - A ) ) ` X ) = ( Q - P ) ) |
110 |
8 109
|
syl |
|- ( ph -> ( ( x e. ( M [,] N ) |-> ( C - A ) ) ` X ) = ( Q - P ) ) |
111 |
14 13
|
oveq12d |
|- ( x = Y -> ( C - A ) = ( S - R ) ) |
112 |
111 107 108
|
fvmpt3i |
|- ( Y e. ( M [,] N ) -> ( ( x e. ( M [,] N ) |-> ( C - A ) ) ` Y ) = ( S - R ) ) |
113 |
9 112
|
syl |
|- ( ph -> ( ( x e. ( M [,] N ) |-> ( C - A ) ) ` Y ) = ( S - R ) ) |
114 |
105 110 113
|
3brtr3d |
|- ( ph -> ( Q - P ) <_ ( S - R ) ) |
115 |
30 33 42 114
|
subled |
|- ( ph -> ( Q - ( S - R ) ) <_ P ) |
116 |
41 115
|
eqbrtrd |
|- ( ph -> ( R - ( S - Q ) ) <_ P ) |
117 |
21 31 33 116
|
subled |
|- ( ph -> ( R - P ) <_ ( S - Q ) ) |