| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvlem.1 |
|- ( ph -> F : D --> CC ) |
| 2 |
|
dvlem.2 |
|- ( ph -> D C_ CC ) |
| 3 |
|
dvlem.3 |
|- ( ph -> B e. D ) |
| 4 |
|
eldifsn |
|- ( A e. ( D \ { B } ) <-> ( A e. D /\ A =/= B ) ) |
| 5 |
1
|
adantr |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> F : D --> CC ) |
| 6 |
|
simprl |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> A e. D ) |
| 7 |
5 6
|
ffvelcdmd |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> ( F ` A ) e. CC ) |
| 8 |
3
|
adantr |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> B e. D ) |
| 9 |
5 8
|
ffvelcdmd |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> ( F ` B ) e. CC ) |
| 10 |
7 9
|
subcld |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> ( ( F ` A ) - ( F ` B ) ) e. CC ) |
| 11 |
2
|
adantr |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> D C_ CC ) |
| 12 |
11 6
|
sseldd |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> A e. CC ) |
| 13 |
11 8
|
sseldd |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> B e. CC ) |
| 14 |
12 13
|
subcld |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> ( A - B ) e. CC ) |
| 15 |
|
simprr |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> A =/= B ) |
| 16 |
12 13 15
|
subne0d |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> ( A - B ) =/= 0 ) |
| 17 |
10 14 16
|
divcld |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> ( ( ( F ` A ) - ( F ` B ) ) / ( A - B ) ) e. CC ) |
| 18 |
4 17
|
sylan2b |
|- ( ( ph /\ A e. ( D \ { B } ) ) -> ( ( ( F ` A ) - ( F ` B ) ) / ( A - B ) ) e. CC ) |