Step |
Hyp |
Ref |
Expression |
1 |
|
dvlem.1 |
|- ( ph -> F : D --> CC ) |
2 |
|
dvlem.2 |
|- ( ph -> D C_ CC ) |
3 |
|
dvlem.3 |
|- ( ph -> B e. D ) |
4 |
|
eldifsn |
|- ( A e. ( D \ { B } ) <-> ( A e. D /\ A =/= B ) ) |
5 |
1
|
adantr |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> F : D --> CC ) |
6 |
|
simprl |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> A e. D ) |
7 |
5 6
|
ffvelrnd |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> ( F ` A ) e. CC ) |
8 |
3
|
adantr |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> B e. D ) |
9 |
5 8
|
ffvelrnd |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> ( F ` B ) e. CC ) |
10 |
7 9
|
subcld |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> ( ( F ` A ) - ( F ` B ) ) e. CC ) |
11 |
2
|
adantr |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> D C_ CC ) |
12 |
11 6
|
sseldd |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> A e. CC ) |
13 |
11 8
|
sseldd |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> B e. CC ) |
14 |
12 13
|
subcld |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> ( A - B ) e. CC ) |
15 |
|
simprr |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> A =/= B ) |
16 |
12 13 15
|
subne0d |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> ( A - B ) =/= 0 ) |
17 |
10 14 16
|
divcld |
|- ( ( ph /\ ( A e. D /\ A =/= B ) ) -> ( ( ( F ` A ) - ( F ` B ) ) / ( A - B ) ) e. CC ) |
18 |
4 17
|
sylan2b |
|- ( ( ph /\ A e. ( D \ { B } ) ) -> ( ( ( F ` A ) - ( F ` B ) ) / ( A - B ) ) e. CC ) |