| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvlip.a |
|- ( ph -> A e. RR ) |
| 2 |
|
dvlip.b |
|- ( ph -> B e. RR ) |
| 3 |
|
dvlip.f |
|- ( ph -> F e. ( ( A [,] B ) -cn-> CC ) ) |
| 4 |
|
dvlip.d |
|- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
| 5 |
|
dvlip.m |
|- ( ph -> M e. RR ) |
| 6 |
|
dvlip.l |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) <_ M ) |
| 7 |
|
fveq2 |
|- ( a = Y -> ( F ` a ) = ( F ` Y ) ) |
| 8 |
7
|
oveq2d |
|- ( a = Y -> ( ( F ` b ) - ( F ` a ) ) = ( ( F ` b ) - ( F ` Y ) ) ) |
| 9 |
8
|
fveq2d |
|- ( a = Y -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) = ( abs ` ( ( F ` b ) - ( F ` Y ) ) ) ) |
| 10 |
|
oveq2 |
|- ( a = Y -> ( b - a ) = ( b - Y ) ) |
| 11 |
10
|
fveq2d |
|- ( a = Y -> ( abs ` ( b - a ) ) = ( abs ` ( b - Y ) ) ) |
| 12 |
11
|
oveq2d |
|- ( a = Y -> ( M x. ( abs ` ( b - a ) ) ) = ( M x. ( abs ` ( b - Y ) ) ) ) |
| 13 |
9 12
|
breq12d |
|- ( a = Y -> ( ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( abs ` ( b - a ) ) ) <-> ( abs ` ( ( F ` b ) - ( F ` Y ) ) ) <_ ( M x. ( abs ` ( b - Y ) ) ) ) ) |
| 14 |
13
|
imbi2d |
|- ( a = Y -> ( ( ph -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( abs ` ( b - a ) ) ) ) <-> ( ph -> ( abs ` ( ( F ` b ) - ( F ` Y ) ) ) <_ ( M x. ( abs ` ( b - Y ) ) ) ) ) ) |
| 15 |
|
fveq2 |
|- ( b = X -> ( F ` b ) = ( F ` X ) ) |
| 16 |
15
|
fvoveq1d |
|- ( b = X -> ( abs ` ( ( F ` b ) - ( F ` Y ) ) ) = ( abs ` ( ( F ` X ) - ( F ` Y ) ) ) ) |
| 17 |
|
fvoveq1 |
|- ( b = X -> ( abs ` ( b - Y ) ) = ( abs ` ( X - Y ) ) ) |
| 18 |
17
|
oveq2d |
|- ( b = X -> ( M x. ( abs ` ( b - Y ) ) ) = ( M x. ( abs ` ( X - Y ) ) ) ) |
| 19 |
16 18
|
breq12d |
|- ( b = X -> ( ( abs ` ( ( F ` b ) - ( F ` Y ) ) ) <_ ( M x. ( abs ` ( b - Y ) ) ) <-> ( abs ` ( ( F ` X ) - ( F ` Y ) ) ) <_ ( M x. ( abs ` ( X - Y ) ) ) ) ) |
| 20 |
19
|
imbi2d |
|- ( b = X -> ( ( ph -> ( abs ` ( ( F ` b ) - ( F ` Y ) ) ) <_ ( M x. ( abs ` ( b - Y ) ) ) ) <-> ( ph -> ( abs ` ( ( F ` X ) - ( F ` Y ) ) ) <_ ( M x. ( abs ` ( X - Y ) ) ) ) ) ) |
| 21 |
|
fveq2 |
|- ( y = b -> ( F ` y ) = ( F ` b ) ) |
| 22 |
|
fveq2 |
|- ( x = a -> ( F ` x ) = ( F ` a ) ) |
| 23 |
21 22
|
oveqan12d |
|- ( ( y = b /\ x = a ) -> ( ( F ` y ) - ( F ` x ) ) = ( ( F ` b ) - ( F ` a ) ) ) |
| 24 |
23
|
fveq2d |
|- ( ( y = b /\ x = a ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) = ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) |
| 25 |
|
oveq12 |
|- ( ( y = b /\ x = a ) -> ( y - x ) = ( b - a ) ) |
| 26 |
25
|
fveq2d |
|- ( ( y = b /\ x = a ) -> ( abs ` ( y - x ) ) = ( abs ` ( b - a ) ) ) |
| 27 |
26
|
oveq2d |
|- ( ( y = b /\ x = a ) -> ( M x. ( abs ` ( y - x ) ) ) = ( M x. ( abs ` ( b - a ) ) ) ) |
| 28 |
24 27
|
breq12d |
|- ( ( y = b /\ x = a ) -> ( ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( M x. ( abs ` ( y - x ) ) ) <-> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( abs ` ( b - a ) ) ) ) ) |
| 29 |
28
|
ancoms |
|- ( ( x = a /\ y = b ) -> ( ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( M x. ( abs ` ( y - x ) ) ) <-> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( abs ` ( b - a ) ) ) ) ) |
| 30 |
|
fveq2 |
|- ( y = a -> ( F ` y ) = ( F ` a ) ) |
| 31 |
|
fveq2 |
|- ( x = b -> ( F ` x ) = ( F ` b ) ) |
| 32 |
30 31
|
oveqan12d |
|- ( ( y = a /\ x = b ) -> ( ( F ` y ) - ( F ` x ) ) = ( ( F ` a ) - ( F ` b ) ) ) |
| 33 |
32
|
fveq2d |
|- ( ( y = a /\ x = b ) -> ( abs ` ( ( F ` y ) - ( F ` x ) ) ) = ( abs ` ( ( F ` a ) - ( F ` b ) ) ) ) |
| 34 |
|
oveq12 |
|- ( ( y = a /\ x = b ) -> ( y - x ) = ( a - b ) ) |
| 35 |
34
|
fveq2d |
|- ( ( y = a /\ x = b ) -> ( abs ` ( y - x ) ) = ( abs ` ( a - b ) ) ) |
| 36 |
35
|
oveq2d |
|- ( ( y = a /\ x = b ) -> ( M x. ( abs ` ( y - x ) ) ) = ( M x. ( abs ` ( a - b ) ) ) ) |
| 37 |
33 36
|
breq12d |
|- ( ( y = a /\ x = b ) -> ( ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( M x. ( abs ` ( y - x ) ) ) <-> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) <_ ( M x. ( abs ` ( a - b ) ) ) ) ) |
| 38 |
37
|
ancoms |
|- ( ( x = b /\ y = a ) -> ( ( abs ` ( ( F ` y ) - ( F ` x ) ) ) <_ ( M x. ( abs ` ( y - x ) ) ) <-> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) <_ ( M x. ( abs ` ( a - b ) ) ) ) ) |
| 39 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 40 |
1 2 39
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 41 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> CC ) -> F : ( A [,] B ) --> CC ) |
| 42 |
3 41
|
syl |
|- ( ph -> F : ( A [,] B ) --> CC ) |
| 43 |
|
ffvelcdm |
|- ( ( F : ( A [,] B ) --> CC /\ a e. ( A [,] B ) ) -> ( F ` a ) e. CC ) |
| 44 |
|
ffvelcdm |
|- ( ( F : ( A [,] B ) --> CC /\ b e. ( A [,] B ) ) -> ( F ` b ) e. CC ) |
| 45 |
43 44
|
anim12dan |
|- ( ( F : ( A [,] B ) --> CC /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( ( F ` a ) e. CC /\ ( F ` b ) e. CC ) ) |
| 46 |
42 45
|
sylan |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( ( F ` a ) e. CC /\ ( F ` b ) e. CC ) ) |
| 47 |
46
|
simprd |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( F ` b ) e. CC ) |
| 48 |
46
|
simpld |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( F ` a ) e. CC ) |
| 49 |
47 48
|
abssubd |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) = ( abs ` ( ( F ` a ) - ( F ` b ) ) ) ) |
| 50 |
|
ax-resscn |
|- RR C_ CC |
| 51 |
40 50
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
| 52 |
51
|
sselda |
|- ( ( ph /\ b e. ( A [,] B ) ) -> b e. CC ) |
| 53 |
52
|
adantrl |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> b e. CC ) |
| 54 |
51
|
sselda |
|- ( ( ph /\ a e. ( A [,] B ) ) -> a e. CC ) |
| 55 |
54
|
adantrr |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> a e. CC ) |
| 56 |
53 55
|
abssubd |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( abs ` ( b - a ) ) = ( abs ` ( a - b ) ) ) |
| 57 |
56
|
oveq2d |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( M x. ( abs ` ( b - a ) ) ) = ( M x. ( abs ` ( a - b ) ) ) ) |
| 58 |
49 57
|
breq12d |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( abs ` ( b - a ) ) ) <-> ( abs ` ( ( F ` a ) - ( F ` b ) ) ) <_ ( M x. ( abs ` ( a - b ) ) ) ) ) |
| 59 |
42
|
adantr |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> F : ( A [,] B ) --> CC ) |
| 60 |
|
simpr2 |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> b e. ( A [,] B ) ) |
| 61 |
59 60
|
ffvelcdmd |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( F ` b ) e. CC ) |
| 62 |
|
simpr1 |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> a e. ( A [,] B ) ) |
| 63 |
59 62
|
ffvelcdmd |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( F ` a ) e. CC ) |
| 64 |
61 63
|
subeq0ad |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( ( F ` b ) - ( F ` a ) ) = 0 <-> ( F ` b ) = ( F ` a ) ) ) |
| 65 |
64
|
biimpar |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) = ( F ` a ) ) -> ( ( F ` b ) - ( F ` a ) ) = 0 ) |
| 66 |
65
|
abs00bd |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) = ( F ` a ) ) -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) = 0 ) |
| 67 |
40
|
adantr |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( A [,] B ) C_ RR ) |
| 68 |
67 62
|
sseldd |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> a e. RR ) |
| 69 |
68
|
rexrd |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> a e. RR* ) |
| 70 |
67 60
|
sseldd |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> b e. RR ) |
| 71 |
70
|
rexrd |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> b e. RR* ) |
| 72 |
|
ioon0 |
|- ( ( a e. RR* /\ b e. RR* ) -> ( ( a (,) b ) =/= (/) <-> a < b ) ) |
| 73 |
69 71 72
|
syl2anc |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( a (,) b ) =/= (/) <-> a < b ) ) |
| 74 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( a (,) b ) =/= (/) ) -> M e. RR ) |
| 75 |
70 68
|
resubcld |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( b - a ) e. RR ) |
| 76 |
75
|
adantr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( a (,) b ) =/= (/) ) -> ( b - a ) e. RR ) |
| 77 |
1
|
adantr |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> A e. RR ) |
| 78 |
77
|
rexrd |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> A e. RR* ) |
| 79 |
2
|
adantr |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> B e. RR ) |
| 80 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( a e. ( A [,] B ) <-> ( a e. RR /\ A <_ a /\ a <_ B ) ) ) |
| 81 |
77 79 80
|
syl2anc |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( a e. ( A [,] B ) <-> ( a e. RR /\ A <_ a /\ a <_ B ) ) ) |
| 82 |
62 81
|
mpbid |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( a e. RR /\ A <_ a /\ a <_ B ) ) |
| 83 |
82
|
simp2d |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> A <_ a ) |
| 84 |
|
iooss1 |
|- ( ( A e. RR* /\ A <_ a ) -> ( a (,) b ) C_ ( A (,) b ) ) |
| 85 |
78 83 84
|
syl2anc |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( a (,) b ) C_ ( A (,) b ) ) |
| 86 |
79
|
rexrd |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> B e. RR* ) |
| 87 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( b e. ( A [,] B ) <-> ( b e. RR /\ A <_ b /\ b <_ B ) ) ) |
| 88 |
77 79 87
|
syl2anc |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( b e. ( A [,] B ) <-> ( b e. RR /\ A <_ b /\ b <_ B ) ) ) |
| 89 |
60 88
|
mpbid |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( b e. RR /\ A <_ b /\ b <_ B ) ) |
| 90 |
89
|
simp3d |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> b <_ B ) |
| 91 |
|
iooss2 |
|- ( ( B e. RR* /\ b <_ B ) -> ( A (,) b ) C_ ( A (,) B ) ) |
| 92 |
86 90 91
|
syl2anc |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( A (,) b ) C_ ( A (,) B ) ) |
| 93 |
85 92
|
sstrd |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( a (,) b ) C_ ( A (,) B ) ) |
| 94 |
|
ssn0 |
|- ( ( ( a (,) b ) C_ ( A (,) B ) /\ ( a (,) b ) =/= (/) ) -> ( A (,) B ) =/= (/) ) |
| 95 |
93 94
|
sylan |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( a (,) b ) =/= (/) ) -> ( A (,) B ) =/= (/) ) |
| 96 |
|
n0 |
|- ( ( A (,) B ) =/= (/) <-> E. x x e. ( A (,) B ) ) |
| 97 |
|
0red |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 e. RR ) |
| 98 |
|
dvf |
|- ( RR _D F ) : dom ( RR _D F ) --> CC |
| 99 |
4
|
feq2d |
|- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> CC <-> ( RR _D F ) : ( A (,) B ) --> CC ) ) |
| 100 |
98 99
|
mpbii |
|- ( ph -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 101 |
100
|
ffvelcdmda |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 102 |
101
|
abscld |
|- ( ( ph /\ x e. ( A (,) B ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) e. RR ) |
| 103 |
5
|
adantr |
|- ( ( ph /\ x e. ( A (,) B ) ) -> M e. RR ) |
| 104 |
101
|
absge0d |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 <_ ( abs ` ( ( RR _D F ) ` x ) ) ) |
| 105 |
97 102 103 104 6
|
letrd |
|- ( ( ph /\ x e. ( A (,) B ) ) -> 0 <_ M ) |
| 106 |
105
|
ex |
|- ( ph -> ( x e. ( A (,) B ) -> 0 <_ M ) ) |
| 107 |
106
|
exlimdv |
|- ( ph -> ( E. x x e. ( A (,) B ) -> 0 <_ M ) ) |
| 108 |
107
|
imp |
|- ( ( ph /\ E. x x e. ( A (,) B ) ) -> 0 <_ M ) |
| 109 |
96 108
|
sylan2b |
|- ( ( ph /\ ( A (,) B ) =/= (/) ) -> 0 <_ M ) |
| 110 |
109
|
adantlr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( A (,) B ) =/= (/) ) -> 0 <_ M ) |
| 111 |
95 110
|
syldan |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( a (,) b ) =/= (/) ) -> 0 <_ M ) |
| 112 |
|
simpr3 |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> a <_ b ) |
| 113 |
70 68
|
subge0d |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( 0 <_ ( b - a ) <-> a <_ b ) ) |
| 114 |
112 113
|
mpbird |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> 0 <_ ( b - a ) ) |
| 115 |
114
|
adantr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( a (,) b ) =/= (/) ) -> 0 <_ ( b - a ) ) |
| 116 |
74 76 111 115
|
mulge0d |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( a (,) b ) =/= (/) ) -> 0 <_ ( M x. ( b - a ) ) ) |
| 117 |
116
|
ex |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( a (,) b ) =/= (/) -> 0 <_ ( M x. ( b - a ) ) ) ) |
| 118 |
73 117
|
sylbird |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( a < b -> 0 <_ ( M x. ( b - a ) ) ) ) |
| 119 |
70
|
recnd |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> b e. CC ) |
| 120 |
68
|
recnd |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> a e. CC ) |
| 121 |
119 120
|
subeq0ad |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( b - a ) = 0 <-> b = a ) ) |
| 122 |
|
equcom |
|- ( b = a <-> a = b ) |
| 123 |
121 122
|
bitrdi |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( b - a ) = 0 <-> a = b ) ) |
| 124 |
|
0re |
|- 0 e. RR |
| 125 |
5
|
adantr |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> M e. RR ) |
| 126 |
125
|
recnd |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> M e. CC ) |
| 127 |
126
|
mul01d |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( M x. 0 ) = 0 ) |
| 128 |
127
|
eqcomd |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> 0 = ( M x. 0 ) ) |
| 129 |
|
eqle |
|- ( ( 0 e. RR /\ 0 = ( M x. 0 ) ) -> 0 <_ ( M x. 0 ) ) |
| 130 |
124 128 129
|
sylancr |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> 0 <_ ( M x. 0 ) ) |
| 131 |
|
oveq2 |
|- ( ( b - a ) = 0 -> ( M x. ( b - a ) ) = ( M x. 0 ) ) |
| 132 |
131
|
breq2d |
|- ( ( b - a ) = 0 -> ( 0 <_ ( M x. ( b - a ) ) <-> 0 <_ ( M x. 0 ) ) ) |
| 133 |
130 132
|
syl5ibrcom |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( b - a ) = 0 -> 0 <_ ( M x. ( b - a ) ) ) ) |
| 134 |
123 133
|
sylbird |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( a = b -> 0 <_ ( M x. ( b - a ) ) ) ) |
| 135 |
68 70
|
leloed |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( a <_ b <-> ( a < b \/ a = b ) ) ) |
| 136 |
112 135
|
mpbid |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( a < b \/ a = b ) ) |
| 137 |
118 134 136
|
mpjaod |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> 0 <_ ( M x. ( b - a ) ) ) |
| 138 |
137
|
adantr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) = ( F ` a ) ) -> 0 <_ ( M x. ( b - a ) ) ) |
| 139 |
66 138
|
eqbrtrd |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) = ( F ` a ) ) -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( b - a ) ) ) |
| 140 |
61 63
|
subcld |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( F ` b ) - ( F ` a ) ) e. CC ) |
| 141 |
140
|
adantr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( F ` b ) - ( F ` a ) ) e. CC ) |
| 142 |
141
|
abscld |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) e. RR ) |
| 143 |
142
|
recnd |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) e. CC ) |
| 144 |
75
|
adantr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( b - a ) e. RR ) |
| 145 |
144
|
recnd |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( b - a ) e. CC ) |
| 146 |
136
|
ord |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( -. a < b -> a = b ) ) |
| 147 |
|
fveq2 |
|- ( a = b -> ( F ` a ) = ( F ` b ) ) |
| 148 |
147
|
eqcomd |
|- ( a = b -> ( F ` b ) = ( F ` a ) ) |
| 149 |
146 148
|
syl6 |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( -. a < b -> ( F ` b ) = ( F ` a ) ) ) |
| 150 |
149
|
necon1ad |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( F ` b ) =/= ( F ` a ) -> a < b ) ) |
| 151 |
150
|
imp |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> a < b ) |
| 152 |
68
|
adantr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> a e. RR ) |
| 153 |
70
|
adantr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> b e. RR ) |
| 154 |
152 153
|
posdifd |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( a < b <-> 0 < ( b - a ) ) ) |
| 155 |
151 154
|
mpbid |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> 0 < ( b - a ) ) |
| 156 |
155
|
gt0ne0d |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( b - a ) =/= 0 ) |
| 157 |
143 145 156
|
divrec2d |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( abs ` ( ( F ` b ) - ( F ` a ) ) ) / ( b - a ) ) = ( ( 1 / ( b - a ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 158 |
|
iccss2 |
|- ( ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) -> ( a [,] b ) C_ ( A [,] B ) ) |
| 159 |
62 60 158
|
syl2anc |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( a [,] b ) C_ ( A [,] B ) ) |
| 160 |
159
|
adantr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( a [,] b ) C_ ( A [,] B ) ) |
| 161 |
160
|
sselda |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a [,] b ) ) -> y e. ( A [,] B ) ) |
| 162 |
42
|
ad2antrr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> F : ( A [,] B ) --> CC ) |
| 163 |
162
|
ffvelcdmda |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( A [,] B ) ) -> ( F ` y ) e. CC ) |
| 164 |
161 163
|
syldan |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a [,] b ) ) -> ( F ` y ) e. CC ) |
| 165 |
140
|
ad2antrr |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a [,] b ) ) -> ( ( F ` b ) - ( F ` a ) ) e. CC ) |
| 166 |
64
|
necon3bid |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( ( F ` b ) - ( F ` a ) ) =/= 0 <-> ( F ` b ) =/= ( F ` a ) ) ) |
| 167 |
166
|
biimpar |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( F ` b ) - ( F ` a ) ) =/= 0 ) |
| 168 |
167
|
adantr |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a [,] b ) ) -> ( ( F ` b ) - ( F ` a ) ) =/= 0 ) |
| 169 |
164 165 168
|
divcld |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a [,] b ) ) -> ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) e. CC ) |
| 170 |
162 160
|
feqresmpt |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( F |` ( a [,] b ) ) = ( y e. ( a [,] b ) |-> ( F ` y ) ) ) |
| 171 |
|
eqidd |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( x e. CC |-> ( x / ( ( F ` b ) - ( F ` a ) ) ) ) = ( x e. CC |-> ( x / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 172 |
|
oveq1 |
|- ( x = ( F ` y ) -> ( x / ( ( F ` b ) - ( F ` a ) ) ) = ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) |
| 173 |
164 170 171 172
|
fmptco |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( x e. CC |-> ( x / ( ( F ` b ) - ( F ` a ) ) ) ) o. ( F |` ( a [,] b ) ) ) = ( y e. ( a [,] b ) |-> ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 174 |
|
ref |
|- Re : CC --> RR |
| 175 |
174
|
a1i |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> Re : CC --> RR ) |
| 176 |
175
|
feqmptd |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> Re = ( x e. CC |-> ( Re ` x ) ) ) |
| 177 |
|
fveq2 |
|- ( x = ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) -> ( Re ` x ) = ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 178 |
169 173 176 177
|
fmptco |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( Re o. ( ( x e. CC |-> ( x / ( ( F ` b ) - ( F ` a ) ) ) ) o. ( F |` ( a [,] b ) ) ) ) = ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) |
| 179 |
3
|
adantr |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> F e. ( ( A [,] B ) -cn-> CC ) ) |
| 180 |
|
rescncf |
|- ( ( a [,] b ) C_ ( A [,] B ) -> ( F e. ( ( A [,] B ) -cn-> CC ) -> ( F |` ( a [,] b ) ) e. ( ( a [,] b ) -cn-> CC ) ) ) |
| 181 |
159 179 180
|
sylc |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( F |` ( a [,] b ) ) e. ( ( a [,] b ) -cn-> CC ) ) |
| 182 |
181
|
adantr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( F |` ( a [,] b ) ) e. ( ( a [,] b ) -cn-> CC ) ) |
| 183 |
|
eqid |
|- ( x e. CC |-> ( x / ( ( F ` b ) - ( F ` a ) ) ) ) = ( x e. CC |-> ( x / ( ( F ` b ) - ( F ` a ) ) ) ) |
| 184 |
183
|
divccncf |
|- ( ( ( ( F ` b ) - ( F ` a ) ) e. CC /\ ( ( F ` b ) - ( F ` a ) ) =/= 0 ) -> ( x e. CC |-> ( x / ( ( F ` b ) - ( F ` a ) ) ) ) e. ( CC -cn-> CC ) ) |
| 185 |
141 167 184
|
syl2anc |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( x e. CC |-> ( x / ( ( F ` b ) - ( F ` a ) ) ) ) e. ( CC -cn-> CC ) ) |
| 186 |
182 185
|
cncfco |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( x e. CC |-> ( x / ( ( F ` b ) - ( F ` a ) ) ) ) o. ( F |` ( a [,] b ) ) ) e. ( ( a [,] b ) -cn-> CC ) ) |
| 187 |
|
recncf |
|- Re e. ( CC -cn-> RR ) |
| 188 |
187
|
a1i |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> Re e. ( CC -cn-> RR ) ) |
| 189 |
186 188
|
cncfco |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( Re o. ( ( x e. CC |-> ( x / ( ( F ` b ) - ( F ` a ) ) ) ) o. ( F |` ( a [,] b ) ) ) ) e. ( ( a [,] b ) -cn-> RR ) ) |
| 190 |
178 189
|
eqeltrrd |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) e. ( ( a [,] b ) -cn-> RR ) ) |
| 191 |
50
|
a1i |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> RR C_ CC ) |
| 192 |
|
iccssre |
|- ( ( a e. RR /\ b e. RR ) -> ( a [,] b ) C_ RR ) |
| 193 |
152 153 192
|
syl2anc |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( a [,] b ) C_ RR ) |
| 194 |
169
|
recld |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a [,] b ) ) -> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) e. RR ) |
| 195 |
194
|
recnd |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a [,] b ) ) -> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) e. CC ) |
| 196 |
|
tgioo4 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
| 197 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 198 |
|
iccntr |
|- ( ( a e. RR /\ b e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( a [,] b ) ) = ( a (,) b ) ) |
| 199 |
68 70 198
|
syl2anc |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( a [,] b ) ) = ( a (,) b ) ) |
| 200 |
199
|
adantr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( a [,] b ) ) = ( a (,) b ) ) |
| 201 |
191 193 195 196 197 200
|
dvmptntr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( RR _D ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) = ( RR _D ( y e. ( a (,) b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) ) |
| 202 |
|
ioossicc |
|- ( a (,) b ) C_ ( a [,] b ) |
| 203 |
202
|
sseli |
|- ( y e. ( a (,) b ) -> y e. ( a [,] b ) ) |
| 204 |
203 169
|
sylan2 |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a (,) b ) ) -> ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) e. CC ) |
| 205 |
|
ovexd |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a (,) b ) ) -> ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) e. _V ) |
| 206 |
|
reelprrecn |
|- RR e. { RR , CC } |
| 207 |
206
|
a1i |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> RR e. { RR , CC } ) |
| 208 |
203 164
|
sylan2 |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a (,) b ) ) -> ( F ` y ) e. CC ) |
| 209 |
93
|
adantr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( a (,) b ) C_ ( A (,) B ) ) |
| 210 |
209
|
sselda |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a (,) b ) ) -> y e. ( A (,) B ) ) |
| 211 |
100
|
ad2antrr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 212 |
211
|
ffvelcdmda |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( A (,) B ) ) -> ( ( RR _D F ) ` y ) e. CC ) |
| 213 |
210 212
|
syldan |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ y e. ( a (,) b ) ) -> ( ( RR _D F ) ` y ) e. CC ) |
| 214 |
40
|
ad2antrr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( A [,] B ) C_ RR ) |
| 215 |
|
ioossre |
|- ( a (,) b ) C_ RR |
| 216 |
215
|
a1i |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( a (,) b ) C_ RR ) |
| 217 |
197 196
|
dvres |
|- ( ( ( RR C_ CC /\ F : ( A [,] B ) --> CC ) /\ ( ( A [,] B ) C_ RR /\ ( a (,) b ) C_ RR ) ) -> ( RR _D ( F |` ( a (,) b ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( a (,) b ) ) ) ) |
| 218 |
191 162 214 216 217
|
syl22anc |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( RR _D ( F |` ( a (,) b ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( a (,) b ) ) ) ) |
| 219 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 220 |
|
iooretop |
|- ( a (,) b ) e. ( topGen ` ran (,) ) |
| 221 |
|
isopn3i |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( a (,) b ) e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( a (,) b ) ) = ( a (,) b ) ) |
| 222 |
219 220 221
|
mp2an |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( a (,) b ) ) = ( a (,) b ) |
| 223 |
222
|
reseq2i |
|- ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( a (,) b ) ) ) = ( ( RR _D F ) |` ( a (,) b ) ) |
| 224 |
218 223
|
eqtrdi |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( RR _D ( F |` ( a (,) b ) ) ) = ( ( RR _D F ) |` ( a (,) b ) ) ) |
| 225 |
202 160
|
sstrid |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( a (,) b ) C_ ( A [,] B ) ) |
| 226 |
162 225
|
feqresmpt |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( F |` ( a (,) b ) ) = ( y e. ( a (,) b ) |-> ( F ` y ) ) ) |
| 227 |
226
|
oveq2d |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( RR _D ( F |` ( a (,) b ) ) ) = ( RR _D ( y e. ( a (,) b ) |-> ( F ` y ) ) ) ) |
| 228 |
100
|
adantr |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 229 |
228 93
|
fssresd |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( RR _D F ) |` ( a (,) b ) ) : ( a (,) b ) --> CC ) |
| 230 |
229
|
feqmptd |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( ( RR _D F ) |` ( a (,) b ) ) = ( y e. ( a (,) b ) |-> ( ( ( RR _D F ) |` ( a (,) b ) ) ` y ) ) ) |
| 231 |
230
|
adantr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( RR _D F ) |` ( a (,) b ) ) = ( y e. ( a (,) b ) |-> ( ( ( RR _D F ) |` ( a (,) b ) ) ` y ) ) ) |
| 232 |
|
fvres |
|- ( y e. ( a (,) b ) -> ( ( ( RR _D F ) |` ( a (,) b ) ) ` y ) = ( ( RR _D F ) ` y ) ) |
| 233 |
232
|
mpteq2ia |
|- ( y e. ( a (,) b ) |-> ( ( ( RR _D F ) |` ( a (,) b ) ) ` y ) ) = ( y e. ( a (,) b ) |-> ( ( RR _D F ) ` y ) ) |
| 234 |
231 233
|
eqtrdi |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( RR _D F ) |` ( a (,) b ) ) = ( y e. ( a (,) b ) |-> ( ( RR _D F ) ` y ) ) ) |
| 235 |
224 227 234
|
3eqtr3d |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( RR _D ( y e. ( a (,) b ) |-> ( F ` y ) ) ) = ( y e. ( a (,) b ) |-> ( ( RR _D F ) ` y ) ) ) |
| 236 |
207 208 213 235 141 167
|
dvmptdivc |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( RR _D ( y e. ( a (,) b ) |-> ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) = ( y e. ( a (,) b ) |-> ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 237 |
204 205 236
|
dvmptre |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( RR _D ( y e. ( a (,) b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) = ( y e. ( a (,) b ) |-> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) |
| 238 |
201 237
|
eqtrd |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( RR _D ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) = ( y e. ( a (,) b ) |-> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) |
| 239 |
238
|
dmeqd |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> dom ( RR _D ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) = dom ( y e. ( a (,) b ) |-> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) |
| 240 |
|
dmmptg |
|- ( A. y e. ( a (,) b ) ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) e. _V -> dom ( y e. ( a (,) b ) |-> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) = ( a (,) b ) ) |
| 241 |
|
fvex |
|- ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) e. _V |
| 242 |
241
|
a1i |
|- ( y e. ( a (,) b ) -> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) e. _V ) |
| 243 |
240 242
|
mprg |
|- dom ( y e. ( a (,) b ) |-> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) = ( a (,) b ) |
| 244 |
239 243
|
eqtrdi |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> dom ( RR _D ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) = ( a (,) b ) ) |
| 245 |
152 153 151 190 244
|
mvth |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> E. x e. ( a (,) b ) ( ( RR _D ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) ` x ) = ( ( ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` b ) - ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` a ) ) / ( b - a ) ) ) |
| 246 |
238
|
fveq1d |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( RR _D ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) ` x ) = ( ( y e. ( a (,) b ) |-> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` x ) ) |
| 247 |
|
fveq2 |
|- ( y = x -> ( ( RR _D F ) ` y ) = ( ( RR _D F ) ` x ) ) |
| 248 |
247
|
fvoveq1d |
|- ( y = x -> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) = ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 249 |
|
eqid |
|- ( y e. ( a (,) b ) |-> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) = ( y e. ( a (,) b ) |-> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 250 |
|
fvex |
|- ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) e. _V |
| 251 |
248 249 250
|
fvmpt |
|- ( x e. ( a (,) b ) -> ( ( y e. ( a (,) b ) |-> ( Re ` ( ( ( RR _D F ) ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` x ) = ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 252 |
246 251
|
sylan9eq |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( RR _D ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) ` x ) = ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 253 |
|
ubicc2 |
|- ( ( a e. RR* /\ b e. RR* /\ a <_ b ) -> b e. ( a [,] b ) ) |
| 254 |
69 71 112 253
|
syl3anc |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> b e. ( a [,] b ) ) |
| 255 |
254
|
ad2antrr |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> b e. ( a [,] b ) ) |
| 256 |
21
|
fvoveq1d |
|- ( y = b -> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) = ( Re ` ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 257 |
|
eqid |
|- ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) = ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 258 |
|
fvex |
|- ( Re ` ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) ) e. _V |
| 259 |
256 257 258
|
fvmpt |
|- ( b e. ( a [,] b ) -> ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` b ) = ( Re ` ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 260 |
255 259
|
syl |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` b ) = ( Re ` ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 261 |
|
lbicc2 |
|- ( ( a e. RR* /\ b e. RR* /\ a <_ b ) -> a e. ( a [,] b ) ) |
| 262 |
69 71 112 261
|
syl3anc |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> a e. ( a [,] b ) ) |
| 263 |
262
|
ad2antrr |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> a e. ( a [,] b ) ) |
| 264 |
30
|
fvoveq1d |
|- ( y = a -> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) = ( Re ` ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 265 |
|
fvex |
|- ( Re ` ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) e. _V |
| 266 |
264 257 265
|
fvmpt |
|- ( a e. ( a [,] b ) -> ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` a ) = ( Re ` ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 267 |
263 266
|
syl |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` a ) = ( Re ` ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 268 |
260 267
|
oveq12d |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` b ) - ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` a ) ) = ( ( Re ` ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) ) - ( Re ` ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) |
| 269 |
61
|
adantr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( F ` b ) e. CC ) |
| 270 |
269 141 167
|
divcld |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) e. CC ) |
| 271 |
63
|
adantr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( F ` a ) e. CC ) |
| 272 |
271 141 167
|
divcld |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) e. CC ) |
| 273 |
270 272
|
resubd |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( Re ` ( ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) - ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) = ( ( Re ` ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) ) - ( Re ` ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) |
| 274 |
269 271 141 167
|
divsubdird |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( ( F ` b ) - ( F ` a ) ) / ( ( F ` b ) - ( F ` a ) ) ) = ( ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) - ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 275 |
141 167
|
dividd |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( ( F ` b ) - ( F ` a ) ) / ( ( F ` b ) - ( F ` a ) ) ) = 1 ) |
| 276 |
274 275
|
eqtr3d |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) - ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) = 1 ) |
| 277 |
276
|
fveq2d |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( Re ` ( ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) - ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) = ( Re ` 1 ) ) |
| 278 |
|
re1 |
|- ( Re ` 1 ) = 1 |
| 279 |
277 278
|
eqtrdi |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( Re ` ( ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) - ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) = 1 ) |
| 280 |
273 279
|
eqtr3d |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( Re ` ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) ) - ( Re ` ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) = 1 ) |
| 281 |
280
|
adantr |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( Re ` ( ( F ` b ) / ( ( F ` b ) - ( F ` a ) ) ) ) - ( Re ` ( ( F ` a ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) = 1 ) |
| 282 |
268 281
|
eqtrd |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` b ) - ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` a ) ) = 1 ) |
| 283 |
282
|
oveq1d |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` b ) - ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` a ) ) / ( b - a ) ) = ( 1 / ( b - a ) ) ) |
| 284 |
252 283
|
eqeq12d |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( ( RR _D ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) ` x ) = ( ( ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` b ) - ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` a ) ) / ( b - a ) ) <-> ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) = ( 1 / ( b - a ) ) ) ) |
| 285 |
284
|
rexbidva |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( E. x e. ( a (,) b ) ( ( RR _D ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ) ` x ) = ( ( ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` b ) - ( ( y e. ( a [,] b ) |-> ( Re ` ( ( F ` y ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) ` a ) ) / ( b - a ) ) <-> E. x e. ( a (,) b ) ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) = ( 1 / ( b - a ) ) ) ) |
| 286 |
245 285
|
mpbid |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> E. x e. ( a (,) b ) ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) = ( 1 / ( b - a ) ) ) |
| 287 |
209
|
sselda |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> x e. ( A (,) B ) ) |
| 288 |
211
|
ffvelcdmda |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( A (,) B ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 289 |
287 288
|
syldan |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( RR _D F ) ` x ) e. CC ) |
| 290 |
140
|
ad2antrr |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( F ` b ) - ( F ` a ) ) e. CC ) |
| 291 |
167
|
adantr |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( F ` b ) - ( F ` a ) ) =/= 0 ) |
| 292 |
289 290 291
|
divcld |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) e. CC ) |
| 293 |
292
|
recld |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) e. RR ) |
| 294 |
142
|
adantr |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) e. RR ) |
| 295 |
293 294
|
remulcld |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) e. RR ) |
| 296 |
289
|
abscld |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) e. RR ) |
| 297 |
125
|
ad2antrr |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> M e. RR ) |
| 298 |
292
|
abscld |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( abs ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) e. RR ) |
| 299 |
141
|
absge0d |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> 0 <_ ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) |
| 300 |
299
|
adantr |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> 0 <_ ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) |
| 301 |
292
|
releabsd |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) <_ ( abs ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 302 |
293 298 294 300 301
|
lemul1ad |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) <_ ( ( abs ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 303 |
292 290
|
absmuld |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( abs ` ( ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) x. ( ( F ` b ) - ( F ` a ) ) ) ) = ( ( abs ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 304 |
289 290 291
|
divcan1d |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) x. ( ( F ` b ) - ( F ` a ) ) ) = ( ( RR _D F ) ` x ) ) |
| 305 |
304
|
fveq2d |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( abs ` ( ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) x. ( ( F ` b ) - ( F ` a ) ) ) ) = ( abs ` ( ( RR _D F ) ` x ) ) ) |
| 306 |
303 305
|
eqtr3d |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( abs ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) = ( abs ` ( ( RR _D F ) ` x ) ) ) |
| 307 |
302 306
|
breqtrd |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) <_ ( abs ` ( ( RR _D F ) ` x ) ) ) |
| 308 |
6
|
ad4ant14 |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( A (,) B ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) <_ M ) |
| 309 |
287 308
|
syldan |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( abs ` ( ( RR _D F ) ` x ) ) <_ M ) |
| 310 |
295 296 297 307 309
|
letrd |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) <_ M ) |
| 311 |
|
oveq1 |
|- ( ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) = ( 1 / ( b - a ) ) -> ( ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) = ( ( 1 / ( b - a ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) ) |
| 312 |
311
|
breq1d |
|- ( ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) = ( 1 / ( b - a ) ) -> ( ( ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) <_ M <-> ( ( 1 / ( b - a ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) <_ M ) ) |
| 313 |
310 312
|
syl5ibcom |
|- ( ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) /\ x e. ( a (,) b ) ) -> ( ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) = ( 1 / ( b - a ) ) -> ( ( 1 / ( b - a ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) <_ M ) ) |
| 314 |
313
|
rexlimdva |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( E. x e. ( a (,) b ) ( Re ` ( ( ( RR _D F ) ` x ) / ( ( F ` b ) - ( F ` a ) ) ) ) = ( 1 / ( b - a ) ) -> ( ( 1 / ( b - a ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) <_ M ) ) |
| 315 |
286 314
|
mpd |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( 1 / ( b - a ) ) x. ( abs ` ( ( F ` b ) - ( F ` a ) ) ) ) <_ M ) |
| 316 |
157 315
|
eqbrtrd |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( abs ` ( ( F ` b ) - ( F ` a ) ) ) / ( b - a ) ) <_ M ) |
| 317 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> M e. RR ) |
| 318 |
|
ledivmul2 |
|- ( ( ( abs ` ( ( F ` b ) - ( F ` a ) ) ) e. RR /\ M e. RR /\ ( ( b - a ) e. RR /\ 0 < ( b - a ) ) ) -> ( ( ( abs ` ( ( F ` b ) - ( F ` a ) ) ) / ( b - a ) ) <_ M <-> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( b - a ) ) ) ) |
| 319 |
142 317 144 155 318
|
syl112anc |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( ( ( abs ` ( ( F ` b ) - ( F ` a ) ) ) / ( b - a ) ) <_ M <-> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( b - a ) ) ) ) |
| 320 |
316 319
|
mpbid |
|- ( ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) /\ ( F ` b ) =/= ( F ` a ) ) -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( b - a ) ) ) |
| 321 |
139 320
|
pm2.61dane |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( b - a ) ) ) |
| 322 |
68 70 112
|
abssubge0d |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( abs ` ( b - a ) ) = ( b - a ) ) |
| 323 |
322
|
oveq2d |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( M x. ( abs ` ( b - a ) ) ) = ( M x. ( b - a ) ) ) |
| 324 |
321 323
|
breqtrrd |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) /\ a <_ b ) ) -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( abs ` ( b - a ) ) ) ) |
| 325 |
29 38 40 58 324
|
wlogle |
|- ( ( ph /\ ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) ) -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( abs ` ( b - a ) ) ) ) |
| 326 |
325
|
expcom |
|- ( ( a e. ( A [,] B ) /\ b e. ( A [,] B ) ) -> ( ph -> ( abs ` ( ( F ` b ) - ( F ` a ) ) ) <_ ( M x. ( abs ` ( b - a ) ) ) ) ) |
| 327 |
14 20 326
|
vtocl2ga |
|- ( ( Y e. ( A [,] B ) /\ X e. ( A [,] B ) ) -> ( ph -> ( abs ` ( ( F ` X ) - ( F ` Y ) ) ) <_ ( M x. ( abs ` ( X - Y ) ) ) ) ) |
| 328 |
327
|
ancoms |
|- ( ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) -> ( ph -> ( abs ` ( ( F ` X ) - ( F ` Y ) ) ) <_ ( M x. ( abs ` ( X - Y ) ) ) ) ) |
| 329 |
328
|
impcom |
|- ( ( ph /\ ( X e. ( A [,] B ) /\ Y e. ( A [,] B ) ) ) -> ( abs ` ( ( F ` X ) - ( F ` Y ) ) ) <_ ( M x. ( abs ` ( X - Y ) ) ) ) |