| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvlip2.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | dvlip2.j |  |-  J = ( ( abs o. - ) |` ( S X. S ) ) | 
						
							| 3 |  | dvlip2.x |  |-  ( ph -> X C_ S ) | 
						
							| 4 |  | dvlip2.f |  |-  ( ph -> F : X --> CC ) | 
						
							| 5 |  | dvlip2.a |  |-  ( ph -> A e. S ) | 
						
							| 6 |  | dvlip2.r |  |-  ( ph -> R e. RR* ) | 
						
							| 7 |  | dvlip2.b |  |-  B = ( A ( ball ` J ) R ) | 
						
							| 8 |  | dvlip2.d |  |-  ( ph -> B C_ dom ( S _D F ) ) | 
						
							| 9 |  | dvlip2.m |  |-  ( ph -> M e. RR ) | 
						
							| 10 |  | dvlip2.l |  |-  ( ( ph /\ x e. B ) -> ( abs ` ( ( S _D F ) ` x ) ) <_ M ) | 
						
							| 11 |  | cnxmet |  |-  ( abs o. - ) e. ( *Met ` CC ) | 
						
							| 12 |  | recnprss |  |-  ( S e. { RR , CC } -> S C_ CC ) | 
						
							| 13 | 1 12 | syl |  |-  ( ph -> S C_ CC ) | 
						
							| 14 |  | xmetres2 |  |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ S C_ CC ) -> ( ( abs o. - ) |` ( S X. S ) ) e. ( *Met ` S ) ) | 
						
							| 15 | 11 13 14 | sylancr |  |-  ( ph -> ( ( abs o. - ) |` ( S X. S ) ) e. ( *Met ` S ) ) | 
						
							| 16 | 2 15 | eqeltrid |  |-  ( ph -> J e. ( *Met ` S ) ) | 
						
							| 17 | 16 | ad2antrr |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> J e. ( *Met ` S ) ) | 
						
							| 18 | 5 | ad2antrr |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> A e. S ) | 
						
							| 19 |  | simplrr |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Z e. B ) | 
						
							| 20 | 19 7 | eleqtrdi |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Z e. ( A ( ball ` J ) R ) ) | 
						
							| 21 | 6 | ad2antrr |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> R e. RR* ) | 
						
							| 22 |  | elbl |  |-  ( ( J e. ( *Met ` S ) /\ A e. S /\ R e. RR* ) -> ( Z e. ( A ( ball ` J ) R ) <-> ( Z e. S /\ ( A J Z ) < R ) ) ) | 
						
							| 23 | 17 18 21 22 | syl3anc |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Z e. ( A ( ball ` J ) R ) <-> ( Z e. S /\ ( A J Z ) < R ) ) ) | 
						
							| 24 | 20 23 | mpbid |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Z e. S /\ ( A J Z ) < R ) ) | 
						
							| 25 | 24 | simpld |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Z e. S ) | 
						
							| 26 |  | xmetcl |  |-  ( ( J e. ( *Met ` S ) /\ A e. S /\ Z e. S ) -> ( A J Z ) e. RR* ) | 
						
							| 27 | 17 18 25 26 | syl3anc |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Z ) e. RR* ) | 
						
							| 28 |  | simplrl |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Y e. B ) | 
						
							| 29 | 28 7 | eleqtrdi |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Y e. ( A ( ball ` J ) R ) ) | 
						
							| 30 |  | elbl |  |-  ( ( J e. ( *Met ` S ) /\ A e. S /\ R e. RR* ) -> ( Y e. ( A ( ball ` J ) R ) <-> ( Y e. S /\ ( A J Y ) < R ) ) ) | 
						
							| 31 | 17 18 21 30 | syl3anc |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Y e. ( A ( ball ` J ) R ) <-> ( Y e. S /\ ( A J Y ) < R ) ) ) | 
						
							| 32 | 29 31 | mpbid |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Y e. S /\ ( A J Y ) < R ) ) | 
						
							| 33 | 32 | simpld |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Y e. S ) | 
						
							| 34 |  | xmetcl |  |-  ( ( J e. ( *Met ` S ) /\ A e. S /\ Y e. S ) -> ( A J Y ) e. RR* ) | 
						
							| 35 | 17 18 33 34 | syl3anc |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Y ) e. RR* ) | 
						
							| 36 | 27 35 | ifcld |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) e. RR* ) | 
						
							| 37 | 24 | simprd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Z ) < R ) | 
						
							| 38 | 32 | simprd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Y ) < R ) | 
						
							| 39 |  | breq1 |  |-  ( ( A J Z ) = if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) -> ( ( A J Z ) < R <-> if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < R ) ) | 
						
							| 40 |  | breq1 |  |-  ( ( A J Y ) = if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) -> ( ( A J Y ) < R <-> if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < R ) ) | 
						
							| 41 | 39 40 | ifboth |  |-  ( ( ( A J Z ) < R /\ ( A J Y ) < R ) -> if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < R ) | 
						
							| 42 | 37 38 41 | syl2anc |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < R ) | 
						
							| 43 |  | qbtwnxr |  |-  ( ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) e. RR* /\ R e. RR* /\ if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < R ) -> E. r e. QQ ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r /\ r < R ) ) | 
						
							| 44 | 36 21 42 43 | syl3anc |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> E. r e. QQ ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r /\ r < R ) ) | 
						
							| 45 |  | qre |  |-  ( r e. QQ -> r e. RR ) | 
						
							| 46 |  | rexr |  |-  ( r e. RR -> r e. RR* ) | 
						
							| 47 |  | xrmaxlt |  |-  ( ( ( A J Y ) e. RR* /\ ( A J Z ) e. RR* /\ r e. RR* ) -> ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r <-> ( ( A J Y ) < r /\ ( A J Z ) < r ) ) ) | 
						
							| 48 | 35 27 46 47 | syl2an3an |  |-  ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) -> ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r <-> ( ( A J Y ) < r /\ ( A J Z ) < r ) ) ) | 
						
							| 49 |  | ioossicc |  |-  ( ( A - r ) (,) ( A + r ) ) C_ ( ( A - r ) [,] ( A + r ) ) | 
						
							| 50 |  | simpr |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> S = RR ) | 
						
							| 51 | 33 50 | eleqtrd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Y e. RR ) | 
						
							| 52 | 51 | ad2antrr |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Y e. RR ) | 
						
							| 53 |  | xmetsym |  |-  ( ( J e. ( *Met ` S ) /\ A e. S /\ Y e. S ) -> ( A J Y ) = ( Y J A ) ) | 
						
							| 54 | 17 18 33 53 | syl3anc |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Y ) = ( Y J A ) ) | 
						
							| 55 | 50 | sqxpeqd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( S X. S ) = ( RR X. RR ) ) | 
						
							| 56 | 55 | reseq2d |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ( abs o. - ) |` ( S X. S ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) ) | 
						
							| 57 | 2 56 | eqtrid |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> J = ( ( abs o. - ) |` ( RR X. RR ) ) ) | 
						
							| 58 | 57 | oveqd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Y J A ) = ( Y ( ( abs o. - ) |` ( RR X. RR ) ) A ) ) | 
						
							| 59 | 18 50 | eleqtrd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> A e. RR ) | 
						
							| 60 |  | eqid |  |-  ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) | 
						
							| 61 | 60 | remetdval |  |-  ( ( Y e. RR /\ A e. RR ) -> ( Y ( ( abs o. - ) |` ( RR X. RR ) ) A ) = ( abs ` ( Y - A ) ) ) | 
						
							| 62 | 51 59 61 | syl2anc |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Y ( ( abs o. - ) |` ( RR X. RR ) ) A ) = ( abs ` ( Y - A ) ) ) | 
						
							| 63 | 54 58 62 | 3eqtrd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Y ) = ( abs ` ( Y - A ) ) ) | 
						
							| 64 | 63 | ad2antrr |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A J Y ) = ( abs ` ( Y - A ) ) ) | 
						
							| 65 |  | simprll |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A J Y ) < r ) | 
						
							| 66 | 64 65 | eqbrtrrd |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( abs ` ( Y - A ) ) < r ) | 
						
							| 67 | 59 | ad2antrr |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> A e. RR ) | 
						
							| 68 |  | simplr |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> r e. RR ) | 
						
							| 69 | 52 67 68 | absdifltd |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( abs ` ( Y - A ) ) < r <-> ( ( A - r ) < Y /\ Y < ( A + r ) ) ) ) | 
						
							| 70 | 66 69 | mpbid |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) < Y /\ Y < ( A + r ) ) ) | 
						
							| 71 | 70 | simpld |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A - r ) < Y ) | 
						
							| 72 | 70 | simprd |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Y < ( A + r ) ) | 
						
							| 73 | 67 68 | resubcld |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A - r ) e. RR ) | 
						
							| 74 | 73 | rexrd |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A - r ) e. RR* ) | 
						
							| 75 | 67 68 | readdcld |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A + r ) e. RR ) | 
						
							| 76 | 75 | rexrd |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A + r ) e. RR* ) | 
						
							| 77 |  | elioo2 |  |-  ( ( ( A - r ) e. RR* /\ ( A + r ) e. RR* ) -> ( Y e. ( ( A - r ) (,) ( A + r ) ) <-> ( Y e. RR /\ ( A - r ) < Y /\ Y < ( A + r ) ) ) ) | 
						
							| 78 | 74 76 77 | syl2anc |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( Y e. ( ( A - r ) (,) ( A + r ) ) <-> ( Y e. RR /\ ( A - r ) < Y /\ Y < ( A + r ) ) ) ) | 
						
							| 79 | 52 71 72 78 | mpbir3and |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Y e. ( ( A - r ) (,) ( A + r ) ) ) | 
						
							| 80 | 49 79 | sselid |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Y e. ( ( A - r ) [,] ( A + r ) ) ) | 
						
							| 81 | 80 | fvresd |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Y ) = ( F ` Y ) ) | 
						
							| 82 | 25 50 | eleqtrd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> Z e. RR ) | 
						
							| 83 | 82 | ad2antrr |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Z e. RR ) | 
						
							| 84 |  | xmetsym |  |-  ( ( J e. ( *Met ` S ) /\ A e. S /\ Z e. S ) -> ( A J Z ) = ( Z J A ) ) | 
						
							| 85 | 17 18 25 84 | syl3anc |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Z ) = ( Z J A ) ) | 
						
							| 86 | 57 | oveqd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Z J A ) = ( Z ( ( abs o. - ) |` ( RR X. RR ) ) A ) ) | 
						
							| 87 | 60 | remetdval |  |-  ( ( Z e. RR /\ A e. RR ) -> ( Z ( ( abs o. - ) |` ( RR X. RR ) ) A ) = ( abs ` ( Z - A ) ) ) | 
						
							| 88 | 82 59 87 | syl2anc |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( Z ( ( abs o. - ) |` ( RR X. RR ) ) A ) = ( abs ` ( Z - A ) ) ) | 
						
							| 89 | 85 86 88 | 3eqtrd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A J Z ) = ( abs ` ( Z - A ) ) ) | 
						
							| 90 | 89 | ad2antrr |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A J Z ) = ( abs ` ( Z - A ) ) ) | 
						
							| 91 |  | simprlr |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A J Z ) < r ) | 
						
							| 92 | 90 91 | eqbrtrrd |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( abs ` ( Z - A ) ) < r ) | 
						
							| 93 | 83 67 68 | absdifltd |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( abs ` ( Z - A ) ) < r <-> ( ( A - r ) < Z /\ Z < ( A + r ) ) ) ) | 
						
							| 94 | 92 93 | mpbid |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) < Z /\ Z < ( A + r ) ) ) | 
						
							| 95 | 94 | simpld |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( A - r ) < Z ) | 
						
							| 96 | 94 | simprd |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Z < ( A + r ) ) | 
						
							| 97 |  | elioo2 |  |-  ( ( ( A - r ) e. RR* /\ ( A + r ) e. RR* ) -> ( Z e. ( ( A - r ) (,) ( A + r ) ) <-> ( Z e. RR /\ ( A - r ) < Z /\ Z < ( A + r ) ) ) ) | 
						
							| 98 | 74 76 97 | syl2anc |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( Z e. ( ( A - r ) (,) ( A + r ) ) <-> ( Z e. RR /\ ( A - r ) < Z /\ Z < ( A + r ) ) ) ) | 
						
							| 99 | 83 95 96 98 | mpbir3and |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Z e. ( ( A - r ) (,) ( A + r ) ) ) | 
						
							| 100 | 49 99 | sselid |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> Z e. ( ( A - r ) [,] ( A + r ) ) ) | 
						
							| 101 | 100 | fvresd |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Z ) = ( F ` Z ) ) | 
						
							| 102 | 81 101 | oveq12d |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Y ) - ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Z ) ) = ( ( F ` Y ) - ( F ` Z ) ) ) | 
						
							| 103 | 102 | fveq2d |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( abs ` ( ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Y ) - ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Z ) ) ) = ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) ) | 
						
							| 104 | 17 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> J e. ( *Met ` S ) ) | 
						
							| 105 |  | elicc2 |  |-  ( ( ( A - r ) e. RR /\ ( A + r ) e. RR ) -> ( x e. ( ( A - r ) [,] ( A + r ) ) <-> ( x e. RR /\ ( A - r ) <_ x /\ x <_ ( A + r ) ) ) ) | 
						
							| 106 | 73 75 105 | syl2anc |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( x e. ( ( A - r ) [,] ( A + r ) ) <-> ( x e. RR /\ ( A - r ) <_ x /\ x <_ ( A + r ) ) ) ) | 
						
							| 107 | 106 | biimpa |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x e. RR /\ ( A - r ) <_ x /\ x <_ ( A + r ) ) ) | 
						
							| 108 | 107 | simp1d |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> x e. RR ) | 
						
							| 109 | 50 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> S = RR ) | 
						
							| 110 | 108 109 | eleqtrrd |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> x e. S ) | 
						
							| 111 | 18 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> A e. S ) | 
						
							| 112 |  | xmetcl |  |-  ( ( J e. ( *Met ` S ) /\ x e. S /\ A e. S ) -> ( x J A ) e. RR* ) | 
						
							| 113 | 104 110 111 112 | syl3anc |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x J A ) e. RR* ) | 
						
							| 114 | 68 | adantr |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> r e. RR ) | 
						
							| 115 | 114 | rexrd |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> r e. RR* ) | 
						
							| 116 | 21 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> R e. RR* ) | 
						
							| 117 | 57 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> J = ( ( abs o. - ) |` ( RR X. RR ) ) ) | 
						
							| 118 | 117 | oveqd |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x J A ) = ( x ( ( abs o. - ) |` ( RR X. RR ) ) A ) ) | 
						
							| 119 | 67 | adantr |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> A e. RR ) | 
						
							| 120 | 60 | remetdval |  |-  ( ( x e. RR /\ A e. RR ) -> ( x ( ( abs o. - ) |` ( RR X. RR ) ) A ) = ( abs ` ( x - A ) ) ) | 
						
							| 121 | 108 119 120 | syl2anc |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x ( ( abs o. - ) |` ( RR X. RR ) ) A ) = ( abs ` ( x - A ) ) ) | 
						
							| 122 | 118 121 | eqtrd |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x J A ) = ( abs ` ( x - A ) ) ) | 
						
							| 123 | 107 | simp2d |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( A - r ) <_ x ) | 
						
							| 124 | 107 | simp3d |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> x <_ ( A + r ) ) | 
						
							| 125 | 108 119 114 | absdifled |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( ( abs ` ( x - A ) ) <_ r <-> ( ( A - r ) <_ x /\ x <_ ( A + r ) ) ) ) | 
						
							| 126 | 123 124 125 | mpbir2and |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( abs ` ( x - A ) ) <_ r ) | 
						
							| 127 | 122 126 | eqbrtrd |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x J A ) <_ r ) | 
						
							| 128 |  | simplrr |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> r < R ) | 
						
							| 129 | 113 115 116 127 128 | xrlelttrd |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x J A ) < R ) | 
						
							| 130 |  | elbl3 |  |-  ( ( ( J e. ( *Met ` S ) /\ R e. RR* ) /\ ( A e. S /\ x e. S ) ) -> ( x e. ( A ( ball ` J ) R ) <-> ( x J A ) < R ) ) | 
						
							| 131 | 104 116 111 110 130 | syl22anc |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> ( x e. ( A ( ball ` J ) R ) <-> ( x J A ) < R ) ) | 
						
							| 132 | 129 131 | mpbird |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) [,] ( A + r ) ) ) -> x e. ( A ( ball ` J ) R ) ) | 
						
							| 133 | 132 | ex |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( x e. ( ( A - r ) [,] ( A + r ) ) -> x e. ( A ( ball ` J ) R ) ) ) | 
						
							| 134 | 133 | ssrdv |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) [,] ( A + r ) ) C_ ( A ( ball ` J ) R ) ) | 
						
							| 135 | 134 7 | sseqtrrdi |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) [,] ( A + r ) ) C_ B ) | 
						
							| 136 | 135 | resabs1d |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( F |` B ) |` ( ( A - r ) [,] ( A + r ) ) ) = ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) | 
						
							| 137 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 138 | 137 | a1i |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> RR C_ CC ) | 
						
							| 139 | 4 | ad4antr |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> F : X --> CC ) | 
						
							| 140 | 13 4 3 | dvbss |  |-  ( ph -> dom ( S _D F ) C_ X ) | 
						
							| 141 | 8 140 | sstrd |  |-  ( ph -> B C_ X ) | 
						
							| 142 | 141 | ad4antr |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> B C_ X ) | 
						
							| 143 | 139 142 | fssresd |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( F |` B ) : B --> CC ) | 
						
							| 144 |  | blssm |  |-  ( ( J e. ( *Met ` S ) /\ A e. S /\ R e. RR* ) -> ( A ( ball ` J ) R ) C_ S ) | 
						
							| 145 | 17 18 21 144 | syl3anc |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A ( ball ` J ) R ) C_ S ) | 
						
							| 146 | 7 145 | eqsstrid |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> B C_ S ) | 
						
							| 147 | 146 50 | sseqtrd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> B C_ RR ) | 
						
							| 148 | 147 | ad2antrr |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> B C_ RR ) | 
						
							| 149 | 137 | a1i |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> RR C_ CC ) | 
						
							| 150 | 4 | ad2antrr |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> F : X --> CC ) | 
						
							| 151 | 3 | ad2antrr |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> X C_ S ) | 
						
							| 152 | 151 50 | sseqtrd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> X C_ RR ) | 
						
							| 153 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 154 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 155 | 153 154 | dvres |  |-  ( ( ( RR C_ CC /\ F : X --> CC ) /\ ( X C_ RR /\ B C_ RR ) ) -> ( RR _D ( F |` B ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` B ) ) ) | 
						
							| 156 | 149 150 152 147 155 | syl22anc |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( RR _D ( F |` B ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` B ) ) ) | 
						
							| 157 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 158 | 57 | fveq2d |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ball ` J ) = ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ) | 
						
							| 159 | 158 | oveqd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A ( ball ` J ) R ) = ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) R ) ) | 
						
							| 160 | 7 159 | eqtrid |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> B = ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) R ) ) | 
						
							| 161 | 57 17 | eqeltrrd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` S ) ) | 
						
							| 162 |  | eqid |  |-  ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) | 
						
							| 163 | 60 162 | tgioo |  |-  ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) | 
						
							| 164 | 163 | blopn |  |-  ( ( ( ( abs o. - ) |` ( RR X. RR ) ) e. ( *Met ` S ) /\ A e. S /\ R e. RR* ) -> ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) R ) e. ( topGen ` ran (,) ) ) | 
						
							| 165 | 161 18 21 164 | syl3anc |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( A ( ball ` ( ( abs o. - ) |` ( RR X. RR ) ) ) R ) e. ( topGen ` ran (,) ) ) | 
						
							| 166 | 160 165 | eqeltrd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> B e. ( topGen ` ran (,) ) ) | 
						
							| 167 |  | isopn3i |  |-  ( ( ( topGen ` ran (,) ) e. Top /\ B e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` B ) = B ) | 
						
							| 168 | 157 166 167 | sylancr |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` B ) = B ) | 
						
							| 169 | 168 | reseq2d |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` B ) ) = ( ( RR _D F ) |` B ) ) | 
						
							| 170 | 156 169 | eqtrd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( RR _D ( F |` B ) ) = ( ( RR _D F ) |` B ) ) | 
						
							| 171 | 170 | dmeqd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> dom ( RR _D ( F |` B ) ) = dom ( ( RR _D F ) |` B ) ) | 
						
							| 172 |  | dmres |  |-  dom ( ( RR _D F ) |` B ) = ( B i^i dom ( RR _D F ) ) | 
						
							| 173 | 8 | ad2antrr |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> B C_ dom ( S _D F ) ) | 
						
							| 174 | 50 | oveq1d |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( S _D F ) = ( RR _D F ) ) | 
						
							| 175 | 174 | dmeqd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> dom ( S _D F ) = dom ( RR _D F ) ) | 
						
							| 176 | 173 175 | sseqtrd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> B C_ dom ( RR _D F ) ) | 
						
							| 177 |  | dfss2 |  |-  ( B C_ dom ( RR _D F ) <-> ( B i^i dom ( RR _D F ) ) = B ) | 
						
							| 178 | 176 177 | sylib |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( B i^i dom ( RR _D F ) ) = B ) | 
						
							| 179 | 172 178 | eqtrid |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> dom ( ( RR _D F ) |` B ) = B ) | 
						
							| 180 | 171 179 | eqtrd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> dom ( RR _D ( F |` B ) ) = B ) | 
						
							| 181 | 180 | ad2antrr |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> dom ( RR _D ( F |` B ) ) = B ) | 
						
							| 182 |  | dvcn |  |-  ( ( ( RR C_ CC /\ ( F |` B ) : B --> CC /\ B C_ RR ) /\ dom ( RR _D ( F |` B ) ) = B ) -> ( F |` B ) e. ( B -cn-> CC ) ) | 
						
							| 183 | 138 143 148 181 182 | syl31anc |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( F |` B ) e. ( B -cn-> CC ) ) | 
						
							| 184 |  | rescncf |  |-  ( ( ( A - r ) [,] ( A + r ) ) C_ B -> ( ( F |` B ) e. ( B -cn-> CC ) -> ( ( F |` B ) |` ( ( A - r ) [,] ( A + r ) ) ) e. ( ( ( A - r ) [,] ( A + r ) ) -cn-> CC ) ) ) | 
						
							| 185 | 135 183 184 | sylc |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( F |` B ) |` ( ( A - r ) [,] ( A + r ) ) ) e. ( ( ( A - r ) [,] ( A + r ) ) -cn-> CC ) ) | 
						
							| 186 | 136 185 | eqeltrrd |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( F |` ( ( A - r ) [,] ( A + r ) ) ) e. ( ( ( A - r ) [,] ( A + r ) ) -cn-> CC ) ) | 
						
							| 187 | 135 148 | sstrd |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) [,] ( A + r ) ) C_ RR ) | 
						
							| 188 | 153 154 | dvres |  |-  ( ( ( RR C_ CC /\ ( F |` B ) : B --> CC ) /\ ( B C_ RR /\ ( ( A - r ) [,] ( A + r ) ) C_ RR ) ) -> ( RR _D ( ( F |` B ) |` ( ( A - r ) [,] ( A + r ) ) ) ) = ( ( RR _D ( F |` B ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A - r ) [,] ( A + r ) ) ) ) ) | 
						
							| 189 | 138 143 148 187 188 | syl22anc |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( RR _D ( ( F |` B ) |` ( ( A - r ) [,] ( A + r ) ) ) ) = ( ( RR _D ( F |` B ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A - r ) [,] ( A + r ) ) ) ) ) | 
						
							| 190 | 136 | oveq2d |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( RR _D ( ( F |` B ) |` ( ( A - r ) [,] ( A + r ) ) ) ) = ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) ) | 
						
							| 191 |  | iccntr |  |-  ( ( ( A - r ) e. RR /\ ( A + r ) e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A - r ) [,] ( A + r ) ) ) = ( ( A - r ) (,) ( A + r ) ) ) | 
						
							| 192 | 73 75 191 | syl2anc |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A - r ) [,] ( A + r ) ) ) = ( ( A - r ) (,) ( A + r ) ) ) | 
						
							| 193 | 192 | reseq2d |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( RR _D ( F |` B ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A - r ) [,] ( A + r ) ) ) ) = ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) ) | 
						
							| 194 | 189 190 193 | 3eqtr3d |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) = ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) ) | 
						
							| 195 | 194 | dmeqd |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> dom ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) = dom ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) ) | 
						
							| 196 |  | dmres |  |-  dom ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) = ( ( ( A - r ) (,) ( A + r ) ) i^i dom ( RR _D ( F |` B ) ) ) | 
						
							| 197 | 49 135 | sstrid |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) (,) ( A + r ) ) C_ B ) | 
						
							| 198 | 197 181 | sseqtrrd |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( A - r ) (,) ( A + r ) ) C_ dom ( RR _D ( F |` B ) ) ) | 
						
							| 199 |  | dfss2 |  |-  ( ( ( A - r ) (,) ( A + r ) ) C_ dom ( RR _D ( F |` B ) ) <-> ( ( ( A - r ) (,) ( A + r ) ) i^i dom ( RR _D ( F |` B ) ) ) = ( ( A - r ) (,) ( A + r ) ) ) | 
						
							| 200 | 198 199 | sylib |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( ( A - r ) (,) ( A + r ) ) i^i dom ( RR _D ( F |` B ) ) ) = ( ( A - r ) (,) ( A + r ) ) ) | 
						
							| 201 | 196 200 | eqtrid |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> dom ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) = ( ( A - r ) (,) ( A + r ) ) ) | 
						
							| 202 | 195 201 | eqtrd |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> dom ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) = ( ( A - r ) (,) ( A + r ) ) ) | 
						
							| 203 | 9 | ad4antr |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> M e. RR ) | 
						
							| 204 | 194 | fveq1d |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) ` x ) = ( ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) ` x ) ) | 
						
							| 205 |  | fvres |  |-  ( x e. ( ( A - r ) (,) ( A + r ) ) -> ( ( ( RR _D ( F |` B ) ) |` ( ( A - r ) (,) ( A + r ) ) ) ` x ) = ( ( RR _D ( F |` B ) ) ` x ) ) | 
						
							| 206 | 204 205 | sylan9eq |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) ` x ) = ( ( RR _D ( F |` B ) ) ` x ) ) | 
						
							| 207 | 174 | reseq1d |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ( S _D F ) |` B ) = ( ( RR _D F ) |` B ) ) | 
						
							| 208 | 170 207 | eqtr4d |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( RR _D ( F |` B ) ) = ( ( S _D F ) |` B ) ) | 
						
							| 209 | 208 | fveq1d |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( ( RR _D ( F |` B ) ) ` x ) = ( ( ( S _D F ) |` B ) ` x ) ) | 
						
							| 210 | 209 | ad3antrrr |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( ( RR _D ( F |` B ) ) ` x ) = ( ( ( S _D F ) |` B ) ` x ) ) | 
						
							| 211 | 197 | sselda |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> x e. B ) | 
						
							| 212 | 211 | fvresd |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( ( ( S _D F ) |` B ) ` x ) = ( ( S _D F ) ` x ) ) | 
						
							| 213 | 206 210 212 | 3eqtrd |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) ` x ) = ( ( S _D F ) ` x ) ) | 
						
							| 214 | 213 | fveq2d |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) ` x ) ) = ( abs ` ( ( S _D F ) ` x ) ) ) | 
						
							| 215 |  | simp-4l |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ph ) | 
						
							| 216 | 215 211 10 | syl2an2r |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( abs ` ( ( S _D F ) ` x ) ) <_ M ) | 
						
							| 217 | 214 216 | eqbrtrd |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ x e. ( ( A - r ) (,) ( A + r ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( A - r ) [,] ( A + r ) ) ) ) ` x ) ) <_ M ) | 
						
							| 218 | 73 75 186 202 203 217 | dvlip |  |-  ( ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) /\ ( Y e. ( ( A - r ) [,] ( A + r ) ) /\ Z e. ( ( A - r ) [,] ( A + r ) ) ) ) -> ( abs ` ( ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Y ) - ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) | 
						
							| 219 | 218 | ex |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( ( Y e. ( ( A - r ) [,] ( A + r ) ) /\ Z e. ( ( A - r ) [,] ( A + r ) ) ) -> ( abs ` ( ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Y ) - ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) ) | 
						
							| 220 | 80 100 219 | mp2and |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( abs ` ( ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Y ) - ( ( F |` ( ( A - r ) [,] ( A + r ) ) ) ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) | 
						
							| 221 | 103 220 | eqbrtrrd |  |-  ( ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) /\ ( ( ( A J Y ) < r /\ ( A J Z ) < r ) /\ r < R ) ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) | 
						
							| 222 | 221 | exp32 |  |-  ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) -> ( ( ( A J Y ) < r /\ ( A J Z ) < r ) -> ( r < R -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) ) ) | 
						
							| 223 | 48 222 | sylbid |  |-  ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) -> ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r -> ( r < R -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) ) ) | 
						
							| 224 | 223 | impd |  |-  ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. RR ) -> ( ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r /\ r < R ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) ) | 
						
							| 225 | 45 224 | sylan2 |  |-  ( ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) /\ r e. QQ ) -> ( ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r /\ r < R ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) ) | 
						
							| 226 | 225 | rexlimdva |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( E. r e. QQ ( if ( ( A J Y ) <_ ( A J Z ) , ( A J Z ) , ( A J Y ) ) < r /\ r < R ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) ) | 
						
							| 227 | 44 226 | mpd |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = RR ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) | 
						
							| 228 |  | simpr |  |-  ( ( ph /\ S = CC ) -> S = CC ) | 
						
							| 229 | 228 | sqxpeqd |  |-  ( ( ph /\ S = CC ) -> ( S X. S ) = ( CC X. CC ) ) | 
						
							| 230 | 229 | reseq2d |  |-  ( ( ph /\ S = CC ) -> ( ( abs o. - ) |` ( S X. S ) ) = ( ( abs o. - ) |` ( CC X. CC ) ) ) | 
						
							| 231 |  | absf |  |-  abs : CC --> RR | 
						
							| 232 |  | subf |  |-  - : ( CC X. CC ) --> CC | 
						
							| 233 |  | fco |  |-  ( ( abs : CC --> RR /\ - : ( CC X. CC ) --> CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) | 
						
							| 234 | 231 232 233 | mp2an |  |-  ( abs o. - ) : ( CC X. CC ) --> RR | 
						
							| 235 |  | ffn |  |-  ( ( abs o. - ) : ( CC X. CC ) --> RR -> ( abs o. - ) Fn ( CC X. CC ) ) | 
						
							| 236 |  | fnresdm |  |-  ( ( abs o. - ) Fn ( CC X. CC ) -> ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) ) | 
						
							| 237 | 234 235 236 | mp2b |  |-  ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) | 
						
							| 238 | 230 237 | eqtrdi |  |-  ( ( ph /\ S = CC ) -> ( ( abs o. - ) |` ( S X. S ) ) = ( abs o. - ) ) | 
						
							| 239 | 2 238 | eqtrid |  |-  ( ( ph /\ S = CC ) -> J = ( abs o. - ) ) | 
						
							| 240 | 239 | fveq2d |  |-  ( ( ph /\ S = CC ) -> ( ball ` J ) = ( ball ` ( abs o. - ) ) ) | 
						
							| 241 | 240 | oveqd |  |-  ( ( ph /\ S = CC ) -> ( A ( ball ` J ) R ) = ( A ( ball ` ( abs o. - ) ) R ) ) | 
						
							| 242 | 7 241 | eqtrid |  |-  ( ( ph /\ S = CC ) -> B = ( A ( ball ` ( abs o. - ) ) R ) ) | 
						
							| 243 | 242 | eleq2d |  |-  ( ( ph /\ S = CC ) -> ( Y e. B <-> Y e. ( A ( ball ` ( abs o. - ) ) R ) ) ) | 
						
							| 244 | 242 | eleq2d |  |-  ( ( ph /\ S = CC ) -> ( Z e. B <-> Z e. ( A ( ball ` ( abs o. - ) ) R ) ) ) | 
						
							| 245 | 243 244 | anbi12d |  |-  ( ( ph /\ S = CC ) -> ( ( Y e. B /\ Z e. B ) <-> ( Y e. ( A ( ball ` ( abs o. - ) ) R ) /\ Z e. ( A ( ball ` ( abs o. - ) ) R ) ) ) ) | 
						
							| 246 | 245 | biimpa |  |-  ( ( ( ph /\ S = CC ) /\ ( Y e. B /\ Z e. B ) ) -> ( Y e. ( A ( ball ` ( abs o. - ) ) R ) /\ Z e. ( A ( ball ` ( abs o. - ) ) R ) ) ) | 
						
							| 247 | 3 | adantr |  |-  ( ( ph /\ S = CC ) -> X C_ S ) | 
						
							| 248 | 247 228 | sseqtrd |  |-  ( ( ph /\ S = CC ) -> X C_ CC ) | 
						
							| 249 | 4 | adantr |  |-  ( ( ph /\ S = CC ) -> F : X --> CC ) | 
						
							| 250 | 5 | adantr |  |-  ( ( ph /\ S = CC ) -> A e. S ) | 
						
							| 251 | 250 228 | eleqtrd |  |-  ( ( ph /\ S = CC ) -> A e. CC ) | 
						
							| 252 | 6 | adantr |  |-  ( ( ph /\ S = CC ) -> R e. RR* ) | 
						
							| 253 |  | eqid |  |-  ( A ( ball ` ( abs o. - ) ) R ) = ( A ( ball ` ( abs o. - ) ) R ) | 
						
							| 254 | 8 | adantr |  |-  ( ( ph /\ S = CC ) -> B C_ dom ( S _D F ) ) | 
						
							| 255 | 228 | oveq1d |  |-  ( ( ph /\ S = CC ) -> ( S _D F ) = ( CC _D F ) ) | 
						
							| 256 | 255 | dmeqd |  |-  ( ( ph /\ S = CC ) -> dom ( S _D F ) = dom ( CC _D F ) ) | 
						
							| 257 | 254 242 256 | 3sstr3d |  |-  ( ( ph /\ S = CC ) -> ( A ( ball ` ( abs o. - ) ) R ) C_ dom ( CC _D F ) ) | 
						
							| 258 | 9 | adantr |  |-  ( ( ph /\ S = CC ) -> M e. RR ) | 
						
							| 259 | 10 | ex |  |-  ( ph -> ( x e. B -> ( abs ` ( ( S _D F ) ` x ) ) <_ M ) ) | 
						
							| 260 | 259 | adantr |  |-  ( ( ph /\ S = CC ) -> ( x e. B -> ( abs ` ( ( S _D F ) ` x ) ) <_ M ) ) | 
						
							| 261 | 242 | eleq2d |  |-  ( ( ph /\ S = CC ) -> ( x e. B <-> x e. ( A ( ball ` ( abs o. - ) ) R ) ) ) | 
						
							| 262 | 255 | fveq1d |  |-  ( ( ph /\ S = CC ) -> ( ( S _D F ) ` x ) = ( ( CC _D F ) ` x ) ) | 
						
							| 263 | 262 | fveq2d |  |-  ( ( ph /\ S = CC ) -> ( abs ` ( ( S _D F ) ` x ) ) = ( abs ` ( ( CC _D F ) ` x ) ) ) | 
						
							| 264 | 263 | breq1d |  |-  ( ( ph /\ S = CC ) -> ( ( abs ` ( ( S _D F ) ` x ) ) <_ M <-> ( abs ` ( ( CC _D F ) ` x ) ) <_ M ) ) | 
						
							| 265 | 260 261 264 | 3imtr3d |  |-  ( ( ph /\ S = CC ) -> ( x e. ( A ( ball ` ( abs o. - ) ) R ) -> ( abs ` ( ( CC _D F ) ` x ) ) <_ M ) ) | 
						
							| 266 | 265 | imp |  |-  ( ( ( ph /\ S = CC ) /\ x e. ( A ( ball ` ( abs o. - ) ) R ) ) -> ( abs ` ( ( CC _D F ) ` x ) ) <_ M ) | 
						
							| 267 | 248 249 251 252 253 257 258 266 | dvlipcn |  |-  ( ( ( ph /\ S = CC ) /\ ( Y e. ( A ( ball ` ( abs o. - ) ) R ) /\ Z e. ( A ( ball ` ( abs o. - ) ) R ) ) ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) | 
						
							| 268 | 246 267 | syldan |  |-  ( ( ( ph /\ S = CC ) /\ ( Y e. B /\ Z e. B ) ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) | 
						
							| 269 | 268 | an32s |  |-  ( ( ( ph /\ ( Y e. B /\ Z e. B ) ) /\ S = CC ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) | 
						
							| 270 |  | elpri |  |-  ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) | 
						
							| 271 | 1 270 | syl |  |-  ( ph -> ( S = RR \/ S = CC ) ) | 
						
							| 272 | 271 | adantr |  |-  ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( S = RR \/ S = CC ) ) | 
						
							| 273 | 227 269 272 | mpjaodan |  |-  ( ( ph /\ ( Y e. B /\ Z e. B ) ) -> ( abs ` ( ( F ` Y ) - ( F ` Z ) ) ) <_ ( M x. ( abs ` ( Y - Z ) ) ) ) |