| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvlog2.s |  |-  S = ( 1 ( ball ` ( abs o. - ) ) 1 ) | 
						
							| 2 |  | ssid |  |-  CC C_ CC | 
						
							| 3 |  | logf1o |  |-  log : ( CC \ { 0 } ) -1-1-onto-> ran log | 
						
							| 4 |  | f1of |  |-  ( log : ( CC \ { 0 } ) -1-1-onto-> ran log -> log : ( CC \ { 0 } ) --> ran log ) | 
						
							| 5 | 3 4 | ax-mp |  |-  log : ( CC \ { 0 } ) --> ran log | 
						
							| 6 |  | logrncn |  |-  ( x e. ran log -> x e. CC ) | 
						
							| 7 | 6 | ssriv |  |-  ran log C_ CC | 
						
							| 8 |  | fss |  |-  ( ( log : ( CC \ { 0 } ) --> ran log /\ ran log C_ CC ) -> log : ( CC \ { 0 } ) --> CC ) | 
						
							| 9 | 5 7 8 | mp2an |  |-  log : ( CC \ { 0 } ) --> CC | 
						
							| 10 |  | eqid |  |-  ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) | 
						
							| 11 | 10 | logdmss |  |-  ( CC \ ( -oo (,] 0 ) ) C_ ( CC \ { 0 } ) | 
						
							| 12 |  | fssres |  |-  ( ( log : ( CC \ { 0 } ) --> CC /\ ( CC \ ( -oo (,] 0 ) ) C_ ( CC \ { 0 } ) ) -> ( log |` ( CC \ ( -oo (,] 0 ) ) ) : ( CC \ ( -oo (,] 0 ) ) --> CC ) | 
						
							| 13 | 9 11 12 | mp2an |  |-  ( log |` ( CC \ ( -oo (,] 0 ) ) ) : ( CC \ ( -oo (,] 0 ) ) --> CC | 
						
							| 14 |  | difss |  |-  ( CC \ ( -oo (,] 0 ) ) C_ CC | 
						
							| 15 |  | cnxmet |  |-  ( abs o. - ) e. ( *Met ` CC ) | 
						
							| 16 |  | ax-1cn |  |-  1 e. CC | 
						
							| 17 |  | 1xr |  |-  1 e. RR* | 
						
							| 18 |  | blssm |  |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. CC /\ 1 e. RR* ) -> ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) | 
						
							| 19 | 15 16 17 18 | mp3an |  |-  ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC | 
						
							| 20 | 1 19 | eqsstri |  |-  S C_ CC | 
						
							| 21 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 22 | 21 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 23 | 22 | toponrestid |  |-  ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) | 
						
							| 24 | 21 23 | dvres |  |-  ( ( ( CC C_ CC /\ ( log |` ( CC \ ( -oo (,] 0 ) ) ) : ( CC \ ( -oo (,] 0 ) ) --> CC ) /\ ( ( CC \ ( -oo (,] 0 ) ) C_ CC /\ S C_ CC ) ) -> ( CC _D ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) |` S ) ) = ( ( CC _D ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` S ) ) ) | 
						
							| 25 | 2 13 14 20 24 | mp4an |  |-  ( CC _D ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) |` S ) ) = ( ( CC _D ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` S ) ) | 
						
							| 26 | 1 | dvlog2lem |  |-  S C_ ( CC \ ( -oo (,] 0 ) ) | 
						
							| 27 |  | resabs1 |  |-  ( S C_ ( CC \ ( -oo (,] 0 ) ) -> ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) |` S ) = ( log |` S ) ) | 
						
							| 28 | 26 27 | ax-mp |  |-  ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) |` S ) = ( log |` S ) | 
						
							| 29 | 28 | oveq2i |  |-  ( CC _D ( ( log |` ( CC \ ( -oo (,] 0 ) ) ) |` S ) ) = ( CC _D ( log |` S ) ) | 
						
							| 30 | 10 | dvlog |  |-  ( CC _D ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) = ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / x ) ) | 
						
							| 31 | 21 | cnfldtop |  |-  ( TopOpen ` CCfld ) e. Top | 
						
							| 32 | 21 | cnfldtopn |  |-  ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) | 
						
							| 33 | 32 | blopn |  |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. CC /\ 1 e. RR* ) -> ( 1 ( ball ` ( abs o. - ) ) 1 ) e. ( TopOpen ` CCfld ) ) | 
						
							| 34 | 15 16 17 33 | mp3an |  |-  ( 1 ( ball ` ( abs o. - ) ) 1 ) e. ( TopOpen ` CCfld ) | 
						
							| 35 | 1 34 | eqeltri |  |-  S e. ( TopOpen ` CCfld ) | 
						
							| 36 |  | isopn3i |  |-  ( ( ( TopOpen ` CCfld ) e. Top /\ S e. ( TopOpen ` CCfld ) ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` S ) = S ) | 
						
							| 37 | 31 35 36 | mp2an |  |-  ( ( int ` ( TopOpen ` CCfld ) ) ` S ) = S | 
						
							| 38 | 30 37 | reseq12i |  |-  ( ( CC _D ( log |` ( CC \ ( -oo (,] 0 ) ) ) ) |` ( ( int ` ( TopOpen ` CCfld ) ) ` S ) ) = ( ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / x ) ) |` S ) | 
						
							| 39 | 25 29 38 | 3eqtr3i |  |-  ( CC _D ( log |` S ) ) = ( ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / x ) ) |` S ) | 
						
							| 40 |  | resmpt |  |-  ( S C_ ( CC \ ( -oo (,] 0 ) ) -> ( ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / x ) ) |` S ) = ( x e. S |-> ( 1 / x ) ) ) | 
						
							| 41 | 26 40 | ax-mp |  |-  ( ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( 1 / x ) ) |` S ) = ( x e. S |-> ( 1 / x ) ) | 
						
							| 42 | 39 41 | eqtri |  |-  ( CC _D ( log |` S ) ) = ( x e. S |-> ( 1 / x ) ) |