| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvlog2.s |  |-  S = ( 1 ( ball ` ( abs o. - ) ) 1 ) | 
						
							| 2 |  | cnxmet |  |-  ( abs o. - ) e. ( *Met ` CC ) | 
						
							| 3 |  | ax-1cn |  |-  1 e. CC | 
						
							| 4 |  | 1xr |  |-  1 e. RR* | 
						
							| 5 |  | blssm |  |-  ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. CC /\ 1 e. RR* ) -> ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC ) | 
						
							| 6 | 2 3 4 5 | mp3an |  |-  ( 1 ( ball ` ( abs o. - ) ) 1 ) C_ CC | 
						
							| 7 | 1 6 | eqsstri |  |-  S C_ CC | 
						
							| 8 | 7 | sseli |  |-  ( x e. S -> x e. CC ) | 
						
							| 9 |  | 1red |  |-  ( x e. ( -oo (,] 0 ) -> 1 e. RR ) | 
						
							| 10 |  | cnmet |  |-  ( abs o. - ) e. ( Met ` CC ) | 
						
							| 11 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 12 |  | 0re |  |-  0 e. RR | 
						
							| 13 |  | iocssre |  |-  ( ( -oo e. RR* /\ 0 e. RR ) -> ( -oo (,] 0 ) C_ RR ) | 
						
							| 14 | 11 12 13 | mp2an |  |-  ( -oo (,] 0 ) C_ RR | 
						
							| 15 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 16 | 14 15 | sstri |  |-  ( -oo (,] 0 ) C_ CC | 
						
							| 17 | 16 | sseli |  |-  ( x e. ( -oo (,] 0 ) -> x e. CC ) | 
						
							| 18 |  | metcl |  |-  ( ( ( abs o. - ) e. ( Met ` CC ) /\ 1 e. CC /\ x e. CC ) -> ( 1 ( abs o. - ) x ) e. RR ) | 
						
							| 19 | 10 3 17 18 | mp3an12i |  |-  ( x e. ( -oo (,] 0 ) -> ( 1 ( abs o. - ) x ) e. RR ) | 
						
							| 20 |  | 1m0e1 |  |-  ( 1 - 0 ) = 1 | 
						
							| 21 | 14 | sseli |  |-  ( x e. ( -oo (,] 0 ) -> x e. RR ) | 
						
							| 22 | 12 | a1i |  |-  ( x e. ( -oo (,] 0 ) -> 0 e. RR ) | 
						
							| 23 |  | elioc2 |  |-  ( ( -oo e. RR* /\ 0 e. RR ) -> ( x e. ( -oo (,] 0 ) <-> ( x e. RR /\ -oo < x /\ x <_ 0 ) ) ) | 
						
							| 24 | 11 12 23 | mp2an |  |-  ( x e. ( -oo (,] 0 ) <-> ( x e. RR /\ -oo < x /\ x <_ 0 ) ) | 
						
							| 25 | 24 | simp3bi |  |-  ( x e. ( -oo (,] 0 ) -> x <_ 0 ) | 
						
							| 26 | 21 22 9 25 | lesub2dd |  |-  ( x e. ( -oo (,] 0 ) -> ( 1 - 0 ) <_ ( 1 - x ) ) | 
						
							| 27 | 20 26 | eqbrtrrid |  |-  ( x e. ( -oo (,] 0 ) -> 1 <_ ( 1 - x ) ) | 
						
							| 28 |  | eqid |  |-  ( abs o. - ) = ( abs o. - ) | 
						
							| 29 | 28 | cnmetdval |  |-  ( ( 1 e. CC /\ x e. CC ) -> ( 1 ( abs o. - ) x ) = ( abs ` ( 1 - x ) ) ) | 
						
							| 30 | 3 17 29 | sylancr |  |-  ( x e. ( -oo (,] 0 ) -> ( 1 ( abs o. - ) x ) = ( abs ` ( 1 - x ) ) ) | 
						
							| 31 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 32 | 31 | a1i |  |-  ( x e. ( -oo (,] 0 ) -> 0 <_ 1 ) | 
						
							| 33 | 21 22 9 25 32 | letrd |  |-  ( x e. ( -oo (,] 0 ) -> x <_ 1 ) | 
						
							| 34 | 21 9 33 | abssubge0d |  |-  ( x e. ( -oo (,] 0 ) -> ( abs ` ( 1 - x ) ) = ( 1 - x ) ) | 
						
							| 35 | 30 34 | eqtrd |  |-  ( x e. ( -oo (,] 0 ) -> ( 1 ( abs o. - ) x ) = ( 1 - x ) ) | 
						
							| 36 | 27 35 | breqtrrd |  |-  ( x e. ( -oo (,] 0 ) -> 1 <_ ( 1 ( abs o. - ) x ) ) | 
						
							| 37 | 9 19 36 | lensymd |  |-  ( x e. ( -oo (,] 0 ) -> -. ( 1 ( abs o. - ) x ) < 1 ) | 
						
							| 38 | 2 | a1i |  |-  ( x e. ( -oo (,] 0 ) -> ( abs o. - ) e. ( *Met ` CC ) ) | 
						
							| 39 | 4 | a1i |  |-  ( x e. ( -oo (,] 0 ) -> 1 e. RR* ) | 
						
							| 40 | 3 | a1i |  |-  ( x e. ( -oo (,] 0 ) -> 1 e. CC ) | 
						
							| 41 |  | elbl2 |  |-  ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 1 e. RR* ) /\ ( 1 e. CC /\ x e. CC ) ) -> ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( 1 ( abs o. - ) x ) < 1 ) ) | 
						
							| 42 | 38 39 40 17 41 | syl22anc |  |-  ( x e. ( -oo (,] 0 ) -> ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) <-> ( 1 ( abs o. - ) x ) < 1 ) ) | 
						
							| 43 | 37 42 | mtbird |  |-  ( x e. ( -oo (,] 0 ) -> -. x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) ) | 
						
							| 44 | 43 | con2i |  |-  ( x e. ( 1 ( ball ` ( abs o. - ) ) 1 ) -> -. x e. ( -oo (,] 0 ) ) | 
						
							| 45 | 44 1 | eleq2s |  |-  ( x e. S -> -. x e. ( -oo (,] 0 ) ) | 
						
							| 46 | 8 45 | eldifd |  |-  ( x e. S -> x e. ( CC \ ( -oo (,] 0 ) ) ) | 
						
							| 47 | 46 | ssriv |  |-  S C_ ( CC \ ( -oo (,] 0 ) ) |