| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvgt0.a |
|- ( ph -> A e. RR ) |
| 2 |
|
dvgt0.b |
|- ( ph -> B e. RR ) |
| 3 |
|
dvgt0.f |
|- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
| 4 |
|
dvlt0.d |
|- ( ph -> ( RR _D F ) : ( A (,) B ) --> ( -oo (,) 0 ) ) |
| 5 |
|
gtso |
|- `' < Or RR |
| 6 |
1 2 3 4
|
dvgt0lem1 |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. ( -oo (,) 0 ) ) |
| 7 |
|
eliooord |
|- ( ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) e. ( -oo (,) 0 ) -> ( -oo < ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) /\ ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) < 0 ) ) |
| 8 |
6 7
|
syl |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( -oo < ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) /\ ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) < 0 ) ) |
| 9 |
8
|
simprd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) < 0 ) |
| 10 |
|
cncff |
|- ( F e. ( ( A [,] B ) -cn-> RR ) -> F : ( A [,] B ) --> RR ) |
| 11 |
3 10
|
syl |
|- ( ph -> F : ( A [,] B ) --> RR ) |
| 12 |
11
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> F : ( A [,] B ) --> RR ) |
| 13 |
|
simplrr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> y e. ( A [,] B ) ) |
| 14 |
12 13
|
ffvelcdmd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` y ) e. RR ) |
| 15 |
|
simplrl |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x e. ( A [,] B ) ) |
| 16 |
12 15
|
ffvelcdmd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` x ) e. RR ) |
| 17 |
14 16
|
resubcld |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F ` y ) - ( F ` x ) ) e. RR ) |
| 18 |
|
0red |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> 0 e. RR ) |
| 19 |
|
iccssre |
|- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
| 20 |
1 2 19
|
syl2anc |
|- ( ph -> ( A [,] B ) C_ RR ) |
| 21 |
20
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( A [,] B ) C_ RR ) |
| 22 |
21 13
|
sseldd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> y e. RR ) |
| 23 |
21 15
|
sseldd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x e. RR ) |
| 24 |
22 23
|
resubcld |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( y - x ) e. RR ) |
| 25 |
|
simpr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> x < y ) |
| 26 |
23 22
|
posdifd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( x < y <-> 0 < ( y - x ) ) ) |
| 27 |
25 26
|
mpbid |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> 0 < ( y - x ) ) |
| 28 |
|
ltdivmul |
|- ( ( ( ( F ` y ) - ( F ` x ) ) e. RR /\ 0 e. RR /\ ( ( y - x ) e. RR /\ 0 < ( y - x ) ) ) -> ( ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) < 0 <-> ( ( F ` y ) - ( F ` x ) ) < ( ( y - x ) x. 0 ) ) ) |
| 29 |
17 18 24 27 28
|
syl112anc |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( ( F ` y ) - ( F ` x ) ) / ( y - x ) ) < 0 <-> ( ( F ` y ) - ( F ` x ) ) < ( ( y - x ) x. 0 ) ) ) |
| 30 |
9 29
|
mpbid |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F ` y ) - ( F ` x ) ) < ( ( y - x ) x. 0 ) ) |
| 31 |
24
|
recnd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( y - x ) e. CC ) |
| 32 |
31
|
mul01d |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( y - x ) x. 0 ) = 0 ) |
| 33 |
30 32
|
breqtrd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( F ` y ) - ( F ` x ) ) < 0 ) |
| 34 |
14 16 18
|
ltsubaddd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( ( ( F ` y ) - ( F ` x ) ) < 0 <-> ( F ` y ) < ( 0 + ( F ` x ) ) ) ) |
| 35 |
33 34
|
mpbid |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` y ) < ( 0 + ( F ` x ) ) ) |
| 36 |
16
|
recnd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` x ) e. CC ) |
| 37 |
36
|
addlidd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( 0 + ( F ` x ) ) = ( F ` x ) ) |
| 38 |
35 37
|
breqtrd |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` y ) < ( F ` x ) ) |
| 39 |
|
fvex |
|- ( F ` x ) e. _V |
| 40 |
|
fvex |
|- ( F ` y ) e. _V |
| 41 |
39 40
|
brcnv |
|- ( ( F ` x ) `' < ( F ` y ) <-> ( F ` y ) < ( F ` x ) ) |
| 42 |
38 41
|
sylibr |
|- ( ( ( ph /\ ( x e. ( A [,] B ) /\ y e. ( A [,] B ) ) ) /\ x < y ) -> ( F ` x ) `' < ( F ` y ) ) |
| 43 |
1 2 3 4 5 42
|
dvgt0lem2 |
|- ( ph -> F Isom < , `' < ( ( A [,] B ) , ran F ) ) |