| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmptadd.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
dvmptadd.a |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
| 3 |
|
dvmptadd.b |
|- ( ( ph /\ x e. X ) -> B e. V ) |
| 4 |
|
dvmptadd.da |
|- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
| 5 |
|
dvmptadd.c |
|- ( ( ph /\ x e. X ) -> C e. CC ) |
| 6 |
|
dvmptadd.d |
|- ( ( ph /\ x e. X ) -> D e. W ) |
| 7 |
|
dvmptadd.dc |
|- ( ph -> ( S _D ( x e. X |-> C ) ) = ( x e. X |-> D ) ) |
| 8 |
2
|
fmpttd |
|- ( ph -> ( x e. X |-> A ) : X --> CC ) |
| 9 |
5
|
fmpttd |
|- ( ph -> ( x e. X |-> C ) : X --> CC ) |
| 10 |
4
|
dmeqd |
|- ( ph -> dom ( S _D ( x e. X |-> A ) ) = dom ( x e. X |-> B ) ) |
| 11 |
3
|
ralrimiva |
|- ( ph -> A. x e. X B e. V ) |
| 12 |
|
dmmptg |
|- ( A. x e. X B e. V -> dom ( x e. X |-> B ) = X ) |
| 13 |
11 12
|
syl |
|- ( ph -> dom ( x e. X |-> B ) = X ) |
| 14 |
10 13
|
eqtrd |
|- ( ph -> dom ( S _D ( x e. X |-> A ) ) = X ) |
| 15 |
7
|
dmeqd |
|- ( ph -> dom ( S _D ( x e. X |-> C ) ) = dom ( x e. X |-> D ) ) |
| 16 |
6
|
ralrimiva |
|- ( ph -> A. x e. X D e. W ) |
| 17 |
|
dmmptg |
|- ( A. x e. X D e. W -> dom ( x e. X |-> D ) = X ) |
| 18 |
16 17
|
syl |
|- ( ph -> dom ( x e. X |-> D ) = X ) |
| 19 |
15 18
|
eqtrd |
|- ( ph -> dom ( S _D ( x e. X |-> C ) ) = X ) |
| 20 |
1 8 9 14 19
|
dvaddf |
|- ( ph -> ( S _D ( ( x e. X |-> A ) oF + ( x e. X |-> C ) ) ) = ( ( S _D ( x e. X |-> A ) ) oF + ( S _D ( x e. X |-> C ) ) ) ) |
| 21 |
|
ovex |
|- ( S _D ( x e. X |-> C ) ) e. _V |
| 22 |
21
|
dmex |
|- dom ( S _D ( x e. X |-> C ) ) e. _V |
| 23 |
19 22
|
eqeltrrdi |
|- ( ph -> X e. _V ) |
| 24 |
|
eqidd |
|- ( ph -> ( x e. X |-> A ) = ( x e. X |-> A ) ) |
| 25 |
|
eqidd |
|- ( ph -> ( x e. X |-> C ) = ( x e. X |-> C ) ) |
| 26 |
23 2 5 24 25
|
offval2 |
|- ( ph -> ( ( x e. X |-> A ) oF + ( x e. X |-> C ) ) = ( x e. X |-> ( A + C ) ) ) |
| 27 |
26
|
oveq2d |
|- ( ph -> ( S _D ( ( x e. X |-> A ) oF + ( x e. X |-> C ) ) ) = ( S _D ( x e. X |-> ( A + C ) ) ) ) |
| 28 |
23 3 6 4 7
|
offval2 |
|- ( ph -> ( ( S _D ( x e. X |-> A ) ) oF + ( S _D ( x e. X |-> C ) ) ) = ( x e. X |-> ( B + D ) ) ) |
| 29 |
20 27 28
|
3eqtr3d |
|- ( ph -> ( S _D ( x e. X |-> ( A + C ) ) ) = ( x e. X |-> ( B + D ) ) ) |