| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmptid.1 |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
dvmptc.2 |
|- ( ph -> A e. CC ) |
| 3 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 4 |
3
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 5 |
|
toponmax |
|- ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> CC e. ( TopOpen ` CCfld ) ) |
| 6 |
4 5
|
mp1i |
|- ( ph -> CC e. ( TopOpen ` CCfld ) ) |
| 7 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
| 8 |
1 7
|
syl |
|- ( ph -> S C_ CC ) |
| 9 |
|
dfss2 |
|- ( S C_ CC <-> ( S i^i CC ) = S ) |
| 10 |
8 9
|
sylib |
|- ( ph -> ( S i^i CC ) = S ) |
| 11 |
2
|
adantr |
|- ( ( ph /\ x e. CC ) -> A e. CC ) |
| 12 |
|
0cnd |
|- ( ( ph /\ x e. CC ) -> 0 e. CC ) |
| 13 |
|
dvconst |
|- ( A e. CC -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |
| 14 |
2 13
|
syl |
|- ( ph -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |
| 15 |
|
fconstmpt |
|- ( CC X. { A } ) = ( x e. CC |-> A ) |
| 16 |
15
|
oveq2i |
|- ( CC _D ( CC X. { A } ) ) = ( CC _D ( x e. CC |-> A ) ) |
| 17 |
|
fconstmpt |
|- ( CC X. { 0 } ) = ( x e. CC |-> 0 ) |
| 18 |
14 16 17
|
3eqtr3g |
|- ( ph -> ( CC _D ( x e. CC |-> A ) ) = ( x e. CC |-> 0 ) ) |
| 19 |
3 1 6 10 11 12 18
|
dvmptres3 |
|- ( ph -> ( S _D ( x e. S |-> A ) ) = ( x e. S |-> 0 ) ) |