Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptid.1 |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
dvmptc.2 |
|- ( ph -> A e. CC ) |
3 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
4 |
3
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
5 |
|
toponmax |
|- ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> CC e. ( TopOpen ` CCfld ) ) |
6 |
4 5
|
mp1i |
|- ( ph -> CC e. ( TopOpen ` CCfld ) ) |
7 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
8 |
1 7
|
syl |
|- ( ph -> S C_ CC ) |
9 |
|
df-ss |
|- ( S C_ CC <-> ( S i^i CC ) = S ) |
10 |
8 9
|
sylib |
|- ( ph -> ( S i^i CC ) = S ) |
11 |
2
|
adantr |
|- ( ( ph /\ x e. CC ) -> A e. CC ) |
12 |
|
0cnd |
|- ( ( ph /\ x e. CC ) -> 0 e. CC ) |
13 |
|
dvconst |
|- ( A e. CC -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |
14 |
2 13
|
syl |
|- ( ph -> ( CC _D ( CC X. { A } ) ) = ( CC X. { 0 } ) ) |
15 |
|
fconstmpt |
|- ( CC X. { A } ) = ( x e. CC |-> A ) |
16 |
15
|
oveq2i |
|- ( CC _D ( CC X. { A } ) ) = ( CC _D ( x e. CC |-> A ) ) |
17 |
|
fconstmpt |
|- ( CC X. { 0 } ) = ( x e. CC |-> 0 ) |
18 |
14 16 17
|
3eqtr3g |
|- ( ph -> ( CC _D ( x e. CC |-> A ) ) = ( x e. CC |-> 0 ) ) |
19 |
3 1 6 10 11 12 18
|
dvmptres3 |
|- ( ph -> ( S _D ( x e. S |-> A ) ) = ( x e. S |-> 0 ) ) |