| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvmptcj.a |  |-  ( ( ph /\ x e. X ) -> A e. CC ) | 
						
							| 2 |  | dvmptcj.b |  |-  ( ( ph /\ x e. X ) -> B e. V ) | 
						
							| 3 |  | dvmptcj.da |  |-  ( ph -> ( RR _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) | 
						
							| 4 | 1 | fmpttd |  |-  ( ph -> ( x e. X |-> A ) : X --> CC ) | 
						
							| 5 | 3 | dmeqd |  |-  ( ph -> dom ( RR _D ( x e. X |-> A ) ) = dom ( x e. X |-> B ) ) | 
						
							| 6 | 2 | ralrimiva |  |-  ( ph -> A. x e. X B e. V ) | 
						
							| 7 |  | dmmptg |  |-  ( A. x e. X B e. V -> dom ( x e. X |-> B ) = X ) | 
						
							| 8 | 6 7 | syl |  |-  ( ph -> dom ( x e. X |-> B ) = X ) | 
						
							| 9 | 5 8 | eqtrd |  |-  ( ph -> dom ( RR _D ( x e. X |-> A ) ) = X ) | 
						
							| 10 |  | dvbsss |  |-  dom ( RR _D ( x e. X |-> A ) ) C_ RR | 
						
							| 11 | 9 10 | eqsstrrdi |  |-  ( ph -> X C_ RR ) | 
						
							| 12 |  | dvcj |  |-  ( ( ( x e. X |-> A ) : X --> CC /\ X C_ RR ) -> ( RR _D ( * o. ( x e. X |-> A ) ) ) = ( * o. ( RR _D ( x e. X |-> A ) ) ) ) | 
						
							| 13 | 4 11 12 | syl2anc |  |-  ( ph -> ( RR _D ( * o. ( x e. X |-> A ) ) ) = ( * o. ( RR _D ( x e. X |-> A ) ) ) ) | 
						
							| 14 |  | cjf |  |-  * : CC --> CC | 
						
							| 15 | 14 | a1i |  |-  ( ph -> * : CC --> CC ) | 
						
							| 16 | 15 1 | cofmpt |  |-  ( ph -> ( * o. ( x e. X |-> A ) ) = ( x e. X |-> ( * ` A ) ) ) | 
						
							| 17 | 16 | oveq2d |  |-  ( ph -> ( RR _D ( * o. ( x e. X |-> A ) ) ) = ( RR _D ( x e. X |-> ( * ` A ) ) ) ) | 
						
							| 18 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 19 | 18 | a1i |  |-  ( ph -> RR e. { RR , CC } ) | 
						
							| 20 | 19 1 2 3 | dvmptcl |  |-  ( ( ph /\ x e. X ) -> B e. CC ) | 
						
							| 21 | 15 | feqmptd |  |-  ( ph -> * = ( y e. CC |-> ( * ` y ) ) ) | 
						
							| 22 |  | fveq2 |  |-  ( y = B -> ( * ` y ) = ( * ` B ) ) | 
						
							| 23 | 20 3 21 22 | fmptco |  |-  ( ph -> ( * o. ( RR _D ( x e. X |-> A ) ) ) = ( x e. X |-> ( * ` B ) ) ) | 
						
							| 24 | 13 17 23 | 3eqtr3d |  |-  ( ph -> ( RR _D ( x e. X |-> ( * ` A ) ) ) = ( x e. X |-> ( * ` B ) ) ) |