Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptcj.a |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
2 |
|
dvmptcj.b |
|- ( ( ph /\ x e. X ) -> B e. V ) |
3 |
|
dvmptcj.da |
|- ( ph -> ( RR _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
4 |
1
|
fmpttd |
|- ( ph -> ( x e. X |-> A ) : X --> CC ) |
5 |
3
|
dmeqd |
|- ( ph -> dom ( RR _D ( x e. X |-> A ) ) = dom ( x e. X |-> B ) ) |
6 |
2
|
ralrimiva |
|- ( ph -> A. x e. X B e. V ) |
7 |
|
dmmptg |
|- ( A. x e. X B e. V -> dom ( x e. X |-> B ) = X ) |
8 |
6 7
|
syl |
|- ( ph -> dom ( x e. X |-> B ) = X ) |
9 |
5 8
|
eqtrd |
|- ( ph -> dom ( RR _D ( x e. X |-> A ) ) = X ) |
10 |
|
dvbsss |
|- dom ( RR _D ( x e. X |-> A ) ) C_ RR |
11 |
9 10
|
eqsstrrdi |
|- ( ph -> X C_ RR ) |
12 |
|
dvcj |
|- ( ( ( x e. X |-> A ) : X --> CC /\ X C_ RR ) -> ( RR _D ( * o. ( x e. X |-> A ) ) ) = ( * o. ( RR _D ( x e. X |-> A ) ) ) ) |
13 |
4 11 12
|
syl2anc |
|- ( ph -> ( RR _D ( * o. ( x e. X |-> A ) ) ) = ( * o. ( RR _D ( x e. X |-> A ) ) ) ) |
14 |
|
cjf |
|- * : CC --> CC |
15 |
14
|
a1i |
|- ( ph -> * : CC --> CC ) |
16 |
15 1
|
cofmpt |
|- ( ph -> ( * o. ( x e. X |-> A ) ) = ( x e. X |-> ( * ` A ) ) ) |
17 |
16
|
oveq2d |
|- ( ph -> ( RR _D ( * o. ( x e. X |-> A ) ) ) = ( RR _D ( x e. X |-> ( * ` A ) ) ) ) |
18 |
|
reelprrecn |
|- RR e. { RR , CC } |
19 |
18
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
20 |
19 1 2 3
|
dvmptcl |
|- ( ( ph /\ x e. X ) -> B e. CC ) |
21 |
15
|
feqmptd |
|- ( ph -> * = ( y e. CC |-> ( * ` y ) ) ) |
22 |
|
fveq2 |
|- ( y = B -> ( * ` y ) = ( * ` B ) ) |
23 |
20 3 21 22
|
fmptco |
|- ( ph -> ( * o. ( RR _D ( x e. X |-> A ) ) ) = ( x e. X |-> ( * ` B ) ) ) |
24 |
13 17 23
|
3eqtr3d |
|- ( ph -> ( RR _D ( x e. X |-> ( * ` A ) ) ) = ( x e. X |-> ( * ` B ) ) ) |