| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvmptadd.s |
|- ( ph -> S e. { RR , CC } ) |
| 2 |
|
dvmptadd.a |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
| 3 |
|
dvmptadd.b |
|- ( ( ph /\ x e. X ) -> B e. V ) |
| 4 |
|
dvmptadd.da |
|- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
| 5 |
|
dvmptcmul.c |
|- ( ph -> C e. CC ) |
| 6 |
5
|
adantr |
|- ( ( ph /\ x e. X ) -> C e. CC ) |
| 7 |
|
0cnd |
|- ( ( ph /\ x e. X ) -> 0 e. CC ) |
| 8 |
5
|
adantr |
|- ( ( ph /\ x e. S ) -> C e. CC ) |
| 9 |
|
0cnd |
|- ( ( ph /\ x e. S ) -> 0 e. CC ) |
| 10 |
1 5
|
dvmptc |
|- ( ph -> ( S _D ( x e. S |-> C ) ) = ( x e. S |-> 0 ) ) |
| 11 |
4
|
dmeqd |
|- ( ph -> dom ( S _D ( x e. X |-> A ) ) = dom ( x e. X |-> B ) ) |
| 12 |
3
|
ralrimiva |
|- ( ph -> A. x e. X B e. V ) |
| 13 |
|
dmmptg |
|- ( A. x e. X B e. V -> dom ( x e. X |-> B ) = X ) |
| 14 |
12 13
|
syl |
|- ( ph -> dom ( x e. X |-> B ) = X ) |
| 15 |
11 14
|
eqtrd |
|- ( ph -> dom ( S _D ( x e. X |-> A ) ) = X ) |
| 16 |
|
dvbsss |
|- dom ( S _D ( x e. X |-> A ) ) C_ S |
| 17 |
15 16
|
eqsstrrdi |
|- ( ph -> X C_ S ) |
| 18 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) |
| 19 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 20 |
19
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 21 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
| 22 |
1 21
|
syl |
|- ( ph -> S C_ CC ) |
| 23 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
| 24 |
20 22 23
|
sylancr |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) |
| 25 |
|
topontop |
|- ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) |
| 26 |
24 25
|
syl |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t S ) e. Top ) |
| 27 |
|
toponuni |
|- ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 28 |
24 27
|
syl |
|- ( ph -> S = U. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 29 |
17 28
|
sseqtrd |
|- ( ph -> X C_ U. ( ( TopOpen ` CCfld ) |`t S ) ) |
| 30 |
|
eqid |
|- U. ( ( TopOpen ` CCfld ) |`t S ) = U. ( ( TopOpen ` CCfld ) |`t S ) |
| 31 |
30
|
ntrss2 |
|- ( ( ( ( TopOpen ` CCfld ) |`t S ) e. Top /\ X C_ U. ( ( TopOpen ` CCfld ) |`t S ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) C_ X ) |
| 32 |
26 29 31
|
syl2anc |
|- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) C_ X ) |
| 33 |
2
|
fmpttd |
|- ( ph -> ( x e. X |-> A ) : X --> CC ) |
| 34 |
22 33 17 18 19
|
dvbssntr |
|- ( ph -> dom ( S _D ( x e. X |-> A ) ) C_ ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) |
| 35 |
15 34
|
eqsstrrd |
|- ( ph -> X C_ ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) ) |
| 36 |
32 35
|
eqssd |
|- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t S ) ) ` X ) = X ) |
| 37 |
1 8 9 10 17 18 19 36
|
dvmptres2 |
|- ( ph -> ( S _D ( x e. X |-> C ) ) = ( x e. X |-> 0 ) ) |
| 38 |
1 6 7 37 2 3 4
|
dvmptmul |
|- ( ph -> ( S _D ( x e. X |-> ( C x. A ) ) ) = ( x e. X |-> ( ( 0 x. A ) + ( B x. C ) ) ) ) |
| 39 |
2
|
mul02d |
|- ( ( ph /\ x e. X ) -> ( 0 x. A ) = 0 ) |
| 40 |
39
|
oveq1d |
|- ( ( ph /\ x e. X ) -> ( ( 0 x. A ) + ( B x. C ) ) = ( 0 + ( B x. C ) ) ) |
| 41 |
1 2 3 4
|
dvmptcl |
|- ( ( ph /\ x e. X ) -> B e. CC ) |
| 42 |
41 6
|
mulcld |
|- ( ( ph /\ x e. X ) -> ( B x. C ) e. CC ) |
| 43 |
42
|
addlidd |
|- ( ( ph /\ x e. X ) -> ( 0 + ( B x. C ) ) = ( B x. C ) ) |
| 44 |
41 6
|
mulcomd |
|- ( ( ph /\ x e. X ) -> ( B x. C ) = ( C x. B ) ) |
| 45 |
40 43 44
|
3eqtrd |
|- ( ( ph /\ x e. X ) -> ( ( 0 x. A ) + ( B x. C ) ) = ( C x. B ) ) |
| 46 |
45
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( ( 0 x. A ) + ( B x. C ) ) ) = ( x e. X |-> ( C x. B ) ) ) |
| 47 |
38 46
|
eqtrd |
|- ( ph -> ( S _D ( x e. X |-> ( C x. A ) ) ) = ( x e. X |-> ( C x. B ) ) ) |