Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptdiv.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
dvmptdiv.a |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
3 |
|
dvmptdiv.b |
|- ( ( ph /\ x e. X ) -> B e. V ) |
4 |
|
dvmptdiv.da |
|- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
5 |
|
dvmptdiv.c |
|- ( ( ph /\ x e. X ) -> C e. ( CC \ { 0 } ) ) |
6 |
|
dvmptdiv.d |
|- ( ( ph /\ x e. X ) -> D e. CC ) |
7 |
|
dvmptdiv.dc |
|- ( ph -> ( S _D ( x e. X |-> C ) ) = ( x e. X |-> D ) ) |
8 |
5
|
eldifad |
|- ( ( ph /\ x e. X ) -> C e. CC ) |
9 |
|
eldifsn |
|- ( C e. ( CC \ { 0 } ) <-> ( C e. CC /\ C =/= 0 ) ) |
10 |
5 9
|
sylib |
|- ( ( ph /\ x e. X ) -> ( C e. CC /\ C =/= 0 ) ) |
11 |
10
|
simprd |
|- ( ( ph /\ x e. X ) -> C =/= 0 ) |
12 |
2 8 11
|
divrecd |
|- ( ( ph /\ x e. X ) -> ( A / C ) = ( A x. ( 1 / C ) ) ) |
13 |
12
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( A / C ) ) = ( x e. X |-> ( A x. ( 1 / C ) ) ) ) |
14 |
13
|
oveq2d |
|- ( ph -> ( S _D ( x e. X |-> ( A / C ) ) ) = ( S _D ( x e. X |-> ( A x. ( 1 / C ) ) ) ) ) |
15 |
8 11
|
reccld |
|- ( ( ph /\ x e. X ) -> ( 1 / C ) e. CC ) |
16 |
|
1cnd |
|- ( ( ph /\ x e. X ) -> 1 e. CC ) |
17 |
16 6
|
mulcld |
|- ( ( ph /\ x e. X ) -> ( 1 x. D ) e. CC ) |
18 |
8
|
sqcld |
|- ( ( ph /\ x e. X ) -> ( C ^ 2 ) e. CC ) |
19 |
11
|
neneqd |
|- ( ( ph /\ x e. X ) -> -. C = 0 ) |
20 |
|
sqeq0 |
|- ( C e. CC -> ( ( C ^ 2 ) = 0 <-> C = 0 ) ) |
21 |
8 20
|
syl |
|- ( ( ph /\ x e. X ) -> ( ( C ^ 2 ) = 0 <-> C = 0 ) ) |
22 |
19 21
|
mtbird |
|- ( ( ph /\ x e. X ) -> -. ( C ^ 2 ) = 0 ) |
23 |
22
|
neqned |
|- ( ( ph /\ x e. X ) -> ( C ^ 2 ) =/= 0 ) |
24 |
17 18 23
|
divcld |
|- ( ( ph /\ x e. X ) -> ( ( 1 x. D ) / ( C ^ 2 ) ) e. CC ) |
25 |
24
|
negcld |
|- ( ( ph /\ x e. X ) -> -u ( ( 1 x. D ) / ( C ^ 2 ) ) e. CC ) |
26 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
27 |
1 26 5 6 7
|
dvrecg |
|- ( ph -> ( S _D ( x e. X |-> ( 1 / C ) ) ) = ( x e. X |-> -u ( ( 1 x. D ) / ( C ^ 2 ) ) ) ) |
28 |
1 2 3 4 15 25 27
|
dvmptmul |
|- ( ph -> ( S _D ( x e. X |-> ( A x. ( 1 / C ) ) ) ) = ( x e. X |-> ( ( B x. ( 1 / C ) ) + ( -u ( ( 1 x. D ) / ( C ^ 2 ) ) x. A ) ) ) ) |
29 |
1 2 3 4
|
dvmptcl |
|- ( ( ph /\ x e. X ) -> B e. CC ) |
30 |
29 8
|
mulcld |
|- ( ( ph /\ x e. X ) -> ( B x. C ) e. CC ) |
31 |
30 18 23
|
divcld |
|- ( ( ph /\ x e. X ) -> ( ( B x. C ) / ( C ^ 2 ) ) e. CC ) |
32 |
6 2
|
mulcld |
|- ( ( ph /\ x e. X ) -> ( D x. A ) e. CC ) |
33 |
32 18 23
|
divcld |
|- ( ( ph /\ x e. X ) -> ( ( D x. A ) / ( C ^ 2 ) ) e. CC ) |
34 |
31 33
|
negsubd |
|- ( ( ph /\ x e. X ) -> ( ( ( B x. C ) / ( C ^ 2 ) ) + -u ( ( D x. A ) / ( C ^ 2 ) ) ) = ( ( ( B x. C ) / ( C ^ 2 ) ) - ( ( D x. A ) / ( C ^ 2 ) ) ) ) |
35 |
29 16 8 11
|
div12d |
|- ( ( ph /\ x e. X ) -> ( B x. ( 1 / C ) ) = ( 1 x. ( B / C ) ) ) |
36 |
29 8 11
|
divcld |
|- ( ( ph /\ x e. X ) -> ( B / C ) e. CC ) |
37 |
36
|
mulid2d |
|- ( ( ph /\ x e. X ) -> ( 1 x. ( B / C ) ) = ( B / C ) ) |
38 |
8
|
sqvald |
|- ( ( ph /\ x e. X ) -> ( C ^ 2 ) = ( C x. C ) ) |
39 |
38
|
oveq2d |
|- ( ( ph /\ x e. X ) -> ( ( B x. C ) / ( C ^ 2 ) ) = ( ( B x. C ) / ( C x. C ) ) ) |
40 |
29 8 8 11 11
|
divcan5rd |
|- ( ( ph /\ x e. X ) -> ( ( B x. C ) / ( C x. C ) ) = ( B / C ) ) |
41 |
39 40
|
eqtr2d |
|- ( ( ph /\ x e. X ) -> ( B / C ) = ( ( B x. C ) / ( C ^ 2 ) ) ) |
42 |
35 37 41
|
3eqtrd |
|- ( ( ph /\ x e. X ) -> ( B x. ( 1 / C ) ) = ( ( B x. C ) / ( C ^ 2 ) ) ) |
43 |
6
|
mulid2d |
|- ( ( ph /\ x e. X ) -> ( 1 x. D ) = D ) |
44 |
43
|
oveq1d |
|- ( ( ph /\ x e. X ) -> ( ( 1 x. D ) / ( C ^ 2 ) ) = ( D / ( C ^ 2 ) ) ) |
45 |
44
|
negeqd |
|- ( ( ph /\ x e. X ) -> -u ( ( 1 x. D ) / ( C ^ 2 ) ) = -u ( D / ( C ^ 2 ) ) ) |
46 |
45
|
oveq1d |
|- ( ( ph /\ x e. X ) -> ( -u ( ( 1 x. D ) / ( C ^ 2 ) ) x. A ) = ( -u ( D / ( C ^ 2 ) ) x. A ) ) |
47 |
6 18 23
|
divcld |
|- ( ( ph /\ x e. X ) -> ( D / ( C ^ 2 ) ) e. CC ) |
48 |
47 2
|
mulneg1d |
|- ( ( ph /\ x e. X ) -> ( -u ( D / ( C ^ 2 ) ) x. A ) = -u ( ( D / ( C ^ 2 ) ) x. A ) ) |
49 |
6 2 18 23
|
div23d |
|- ( ( ph /\ x e. X ) -> ( ( D x. A ) / ( C ^ 2 ) ) = ( ( D / ( C ^ 2 ) ) x. A ) ) |
50 |
49
|
eqcomd |
|- ( ( ph /\ x e. X ) -> ( ( D / ( C ^ 2 ) ) x. A ) = ( ( D x. A ) / ( C ^ 2 ) ) ) |
51 |
50
|
negeqd |
|- ( ( ph /\ x e. X ) -> -u ( ( D / ( C ^ 2 ) ) x. A ) = -u ( ( D x. A ) / ( C ^ 2 ) ) ) |
52 |
46 48 51
|
3eqtrd |
|- ( ( ph /\ x e. X ) -> ( -u ( ( 1 x. D ) / ( C ^ 2 ) ) x. A ) = -u ( ( D x. A ) / ( C ^ 2 ) ) ) |
53 |
42 52
|
oveq12d |
|- ( ( ph /\ x e. X ) -> ( ( B x. ( 1 / C ) ) + ( -u ( ( 1 x. D ) / ( C ^ 2 ) ) x. A ) ) = ( ( ( B x. C ) / ( C ^ 2 ) ) + -u ( ( D x. A ) / ( C ^ 2 ) ) ) ) |
54 |
30 32 18 23
|
divsubdird |
|- ( ( ph /\ x e. X ) -> ( ( ( B x. C ) - ( D x. A ) ) / ( C ^ 2 ) ) = ( ( ( B x. C ) / ( C ^ 2 ) ) - ( ( D x. A ) / ( C ^ 2 ) ) ) ) |
55 |
34 53 54
|
3eqtr4d |
|- ( ( ph /\ x e. X ) -> ( ( B x. ( 1 / C ) ) + ( -u ( ( 1 x. D ) / ( C ^ 2 ) ) x. A ) ) = ( ( ( B x. C ) - ( D x. A ) ) / ( C ^ 2 ) ) ) |
56 |
55
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( ( B x. ( 1 / C ) ) + ( -u ( ( 1 x. D ) / ( C ^ 2 ) ) x. A ) ) ) = ( x e. X |-> ( ( ( B x. C ) - ( D x. A ) ) / ( C ^ 2 ) ) ) ) |
57 |
14 28 56
|
3eqtrd |
|- ( ph -> ( S _D ( x e. X |-> ( A / C ) ) ) = ( x e. X |-> ( ( ( B x. C ) - ( D x. A ) ) / ( C ^ 2 ) ) ) ) |