Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptadd.s |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
dvmptadd.a |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
3 |
|
dvmptadd.b |
|- ( ( ph /\ x e. X ) -> B e. V ) |
4 |
|
dvmptadd.da |
|- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
5 |
|
dvmptcmul.c |
|- ( ph -> C e. CC ) |
6 |
|
dvmptdivc.0 |
|- ( ph -> C =/= 0 ) |
7 |
5 6
|
reccld |
|- ( ph -> ( 1 / C ) e. CC ) |
8 |
1 2 3 4 7
|
dvmptcmul |
|- ( ph -> ( S _D ( x e. X |-> ( ( 1 / C ) x. A ) ) ) = ( x e. X |-> ( ( 1 / C ) x. B ) ) ) |
9 |
5
|
adantr |
|- ( ( ph /\ x e. X ) -> C e. CC ) |
10 |
6
|
adantr |
|- ( ( ph /\ x e. X ) -> C =/= 0 ) |
11 |
2 9 10
|
divrec2d |
|- ( ( ph /\ x e. X ) -> ( A / C ) = ( ( 1 / C ) x. A ) ) |
12 |
11
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( A / C ) ) = ( x e. X |-> ( ( 1 / C ) x. A ) ) ) |
13 |
12
|
oveq2d |
|- ( ph -> ( S _D ( x e. X |-> ( A / C ) ) ) = ( S _D ( x e. X |-> ( ( 1 / C ) x. A ) ) ) ) |
14 |
1 2 3 4
|
dvmptcl |
|- ( ( ph /\ x e. X ) -> B e. CC ) |
15 |
14 9 10
|
divrec2d |
|- ( ( ph /\ x e. X ) -> ( B / C ) = ( ( 1 / C ) x. B ) ) |
16 |
15
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( B / C ) ) = ( x e. X |-> ( ( 1 / C ) x. B ) ) ) |
17 |
8 13 16
|
3eqtr4d |
|- ( ph -> ( S _D ( x e. X |-> ( A / C ) ) ) = ( x e. X |-> ( B / C ) ) ) |