Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptid.1 |
|- ( ph -> S e. { RR , CC } ) |
2 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
3 |
2
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
4 |
|
toponmax |
|- ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> CC e. ( TopOpen ` CCfld ) ) |
5 |
3 4
|
mp1i |
|- ( ph -> CC e. ( TopOpen ` CCfld ) ) |
6 |
|
recnprss |
|- ( S e. { RR , CC } -> S C_ CC ) |
7 |
1 6
|
syl |
|- ( ph -> S C_ CC ) |
8 |
|
df-ss |
|- ( S C_ CC <-> ( S i^i CC ) = S ) |
9 |
7 8
|
sylib |
|- ( ph -> ( S i^i CC ) = S ) |
10 |
|
simpr |
|- ( ( ph /\ x e. CC ) -> x e. CC ) |
11 |
|
1cnd |
|- ( ( ph /\ x e. CC ) -> 1 e. CC ) |
12 |
|
mptresid |
|- ( _I |` CC ) = ( x e. CC |-> x ) |
13 |
12
|
eqcomi |
|- ( x e. CC |-> x ) = ( _I |` CC ) |
14 |
13
|
oveq2i |
|- ( CC _D ( x e. CC |-> x ) ) = ( CC _D ( _I |` CC ) ) |
15 |
|
dvid |
|- ( CC _D ( _I |` CC ) ) = ( CC X. { 1 } ) |
16 |
|
fconstmpt |
|- ( CC X. { 1 } ) = ( x e. CC |-> 1 ) |
17 |
14 15 16
|
3eqtri |
|- ( CC _D ( x e. CC |-> x ) ) = ( x e. CC |-> 1 ) |
18 |
17
|
a1i |
|- ( ph -> ( CC _D ( x e. CC |-> x ) ) = ( x e. CC |-> 1 ) ) |
19 |
2 1 5 9 10 11 18
|
dvmptres3 |
|- ( ph -> ( S _D ( x e. S |-> x ) ) = ( x e. S |-> 1 ) ) |