| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvmptidg.s |  |-  ( ph -> S e. { RR , CC } ) | 
						
							| 2 |  | dvmptidg.a |  |-  ( ph -> A e. ( ( TopOpen ` CCfld ) |`t S ) ) | 
						
							| 3 |  | ax-resscn |  |-  RR C_ CC | 
						
							| 4 |  | sseq1 |  |-  ( S = RR -> ( S C_ CC <-> RR C_ CC ) ) | 
						
							| 5 | 3 4 | mpbiri |  |-  ( S = RR -> S C_ CC ) | 
						
							| 6 |  | eqimss |  |-  ( S = CC -> S C_ CC ) | 
						
							| 7 | 5 6 | pm3.2i |  |-  ( ( S = RR -> S C_ CC ) /\ ( S = CC -> S C_ CC ) ) | 
						
							| 8 |  | elpri |  |-  ( S e. { RR , CC } -> ( S = RR \/ S = CC ) ) | 
						
							| 9 | 1 8 | syl |  |-  ( ph -> ( S = RR \/ S = CC ) ) | 
						
							| 10 |  | pm3.44 |  |-  ( ( ( S = RR -> S C_ CC ) /\ ( S = CC -> S C_ CC ) ) -> ( ( S = RR \/ S = CC ) -> S C_ CC ) ) | 
						
							| 11 | 7 9 10 | mpsyl |  |-  ( ph -> S C_ CC ) | 
						
							| 12 | 11 | sselda |  |-  ( ( ph /\ x e. S ) -> x e. CC ) | 
						
							| 13 |  | 1red |  |-  ( ( ph /\ x e. S ) -> 1 e. RR ) | 
						
							| 14 | 1 | dvmptid |  |-  ( ph -> ( S _D ( x e. S |-> x ) ) = ( x e. S |-> 1 ) ) | 
						
							| 15 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 16 | 15 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 17 | 16 | a1i |  |-  ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) | 
						
							| 18 |  | resttopon |  |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ S C_ CC ) -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) | 
						
							| 19 | 17 11 18 | syl2anc |  |-  ( ph -> ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) ) | 
						
							| 20 |  | toponss |  |-  ( ( ( ( TopOpen ` CCfld ) |`t S ) e. ( TopOn ` S ) /\ A e. ( ( TopOpen ` CCfld ) |`t S ) ) -> A C_ S ) | 
						
							| 21 | 19 2 20 | syl2anc |  |-  ( ph -> A C_ S ) | 
						
							| 22 |  | eqid |  |-  ( ( TopOpen ` CCfld ) |`t S ) = ( ( TopOpen ` CCfld ) |`t S ) | 
						
							| 23 | 1 12 13 14 21 22 15 2 | dvmptres |  |-  ( ph -> ( S _D ( x e. A |-> x ) ) = ( x e. A |-> 1 ) ) |