| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvmptcj.a |  |-  ( ( ph /\ x e. X ) -> A e. CC ) | 
						
							| 2 |  | dvmptcj.b |  |-  ( ( ph /\ x e. X ) -> B e. V ) | 
						
							| 3 |  | dvmptcj.da |  |-  ( ph -> ( RR _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) | 
						
							| 4 |  | reelprrecn |  |-  RR e. { RR , CC } | 
						
							| 5 | 4 | a1i |  |-  ( ph -> RR e. { RR , CC } ) | 
						
							| 6 | 1 | cjcld |  |-  ( ( ph /\ x e. X ) -> ( * ` A ) e. CC ) | 
						
							| 7 | 1 6 | subcld |  |-  ( ( ph /\ x e. X ) -> ( A - ( * ` A ) ) e. CC ) | 
						
							| 8 | 5 1 2 3 | dvmptcl |  |-  ( ( ph /\ x e. X ) -> B e. CC ) | 
						
							| 9 | 8 | cjcld |  |-  ( ( ph /\ x e. X ) -> ( * ` B ) e. CC ) | 
						
							| 10 | 8 9 | subcld |  |-  ( ( ph /\ x e. X ) -> ( B - ( * ` B ) ) e. CC ) | 
						
							| 11 | 1 2 3 | dvmptcj |  |-  ( ph -> ( RR _D ( x e. X |-> ( * ` A ) ) ) = ( x e. X |-> ( * ` B ) ) ) | 
						
							| 12 | 5 1 2 3 6 9 11 | dvmptsub |  |-  ( ph -> ( RR _D ( x e. X |-> ( A - ( * ` A ) ) ) ) = ( x e. X |-> ( B - ( * ` B ) ) ) ) | 
						
							| 13 |  | 2mulicn |  |-  ( 2 x. _i ) e. CC | 
						
							| 14 |  | 2muline0 |  |-  ( 2 x. _i ) =/= 0 | 
						
							| 15 | 13 14 | reccli |  |-  ( 1 / ( 2 x. _i ) ) e. CC | 
						
							| 16 | 15 | a1i |  |-  ( ph -> ( 1 / ( 2 x. _i ) ) e. CC ) | 
						
							| 17 | 5 7 10 12 16 | dvmptcmul |  |-  ( ph -> ( RR _D ( x e. X |-> ( ( 1 / ( 2 x. _i ) ) x. ( A - ( * ` A ) ) ) ) ) = ( x e. X |-> ( ( 1 / ( 2 x. _i ) ) x. ( B - ( * ` B ) ) ) ) ) | 
						
							| 18 |  | imval2 |  |-  ( A e. CC -> ( Im ` A ) = ( ( A - ( * ` A ) ) / ( 2 x. _i ) ) ) | 
						
							| 19 | 1 18 | syl |  |-  ( ( ph /\ x e. X ) -> ( Im ` A ) = ( ( A - ( * ` A ) ) / ( 2 x. _i ) ) ) | 
						
							| 20 |  | divrec2 |  |-  ( ( ( A - ( * ` A ) ) e. CC /\ ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) -> ( ( A - ( * ` A ) ) / ( 2 x. _i ) ) = ( ( 1 / ( 2 x. _i ) ) x. ( A - ( * ` A ) ) ) ) | 
						
							| 21 | 13 14 20 | mp3an23 |  |-  ( ( A - ( * ` A ) ) e. CC -> ( ( A - ( * ` A ) ) / ( 2 x. _i ) ) = ( ( 1 / ( 2 x. _i ) ) x. ( A - ( * ` A ) ) ) ) | 
						
							| 22 | 7 21 | syl |  |-  ( ( ph /\ x e. X ) -> ( ( A - ( * ` A ) ) / ( 2 x. _i ) ) = ( ( 1 / ( 2 x. _i ) ) x. ( A - ( * ` A ) ) ) ) | 
						
							| 23 | 19 22 | eqtrd |  |-  ( ( ph /\ x e. X ) -> ( Im ` A ) = ( ( 1 / ( 2 x. _i ) ) x. ( A - ( * ` A ) ) ) ) | 
						
							| 24 | 23 | mpteq2dva |  |-  ( ph -> ( x e. X |-> ( Im ` A ) ) = ( x e. X |-> ( ( 1 / ( 2 x. _i ) ) x. ( A - ( * ` A ) ) ) ) ) | 
						
							| 25 | 24 | oveq2d |  |-  ( ph -> ( RR _D ( x e. X |-> ( Im ` A ) ) ) = ( RR _D ( x e. X |-> ( ( 1 / ( 2 x. _i ) ) x. ( A - ( * ` A ) ) ) ) ) ) | 
						
							| 26 |  | imval2 |  |-  ( B e. CC -> ( Im ` B ) = ( ( B - ( * ` B ) ) / ( 2 x. _i ) ) ) | 
						
							| 27 | 8 26 | syl |  |-  ( ( ph /\ x e. X ) -> ( Im ` B ) = ( ( B - ( * ` B ) ) / ( 2 x. _i ) ) ) | 
						
							| 28 |  | divrec2 |  |-  ( ( ( B - ( * ` B ) ) e. CC /\ ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) -> ( ( B - ( * ` B ) ) / ( 2 x. _i ) ) = ( ( 1 / ( 2 x. _i ) ) x. ( B - ( * ` B ) ) ) ) | 
						
							| 29 | 13 14 28 | mp3an23 |  |-  ( ( B - ( * ` B ) ) e. CC -> ( ( B - ( * ` B ) ) / ( 2 x. _i ) ) = ( ( 1 / ( 2 x. _i ) ) x. ( B - ( * ` B ) ) ) ) | 
						
							| 30 | 10 29 | syl |  |-  ( ( ph /\ x e. X ) -> ( ( B - ( * ` B ) ) / ( 2 x. _i ) ) = ( ( 1 / ( 2 x. _i ) ) x. ( B - ( * ` B ) ) ) ) | 
						
							| 31 | 27 30 | eqtrd |  |-  ( ( ph /\ x e. X ) -> ( Im ` B ) = ( ( 1 / ( 2 x. _i ) ) x. ( B - ( * ` B ) ) ) ) | 
						
							| 32 | 31 | mpteq2dva |  |-  ( ph -> ( x e. X |-> ( Im ` B ) ) = ( x e. X |-> ( ( 1 / ( 2 x. _i ) ) x. ( B - ( * ` B ) ) ) ) ) | 
						
							| 33 | 17 25 32 | 3eqtr4d |  |-  ( ph -> ( RR _D ( x e. X |-> ( Im ` A ) ) ) = ( x e. X |-> ( Im ` B ) ) ) |