Step |
Hyp |
Ref |
Expression |
1 |
|
dvmptcj.a |
|- ( ( ph /\ x e. X ) -> A e. CC ) |
2 |
|
dvmptcj.b |
|- ( ( ph /\ x e. X ) -> B e. V ) |
3 |
|
dvmptcj.da |
|- ( ph -> ( RR _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
4 |
|
reelprrecn |
|- RR e. { RR , CC } |
5 |
4
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
6 |
1
|
cjcld |
|- ( ( ph /\ x e. X ) -> ( * ` A ) e. CC ) |
7 |
1 6
|
subcld |
|- ( ( ph /\ x e. X ) -> ( A - ( * ` A ) ) e. CC ) |
8 |
5 1 2 3
|
dvmptcl |
|- ( ( ph /\ x e. X ) -> B e. CC ) |
9 |
8
|
cjcld |
|- ( ( ph /\ x e. X ) -> ( * ` B ) e. CC ) |
10 |
8 9
|
subcld |
|- ( ( ph /\ x e. X ) -> ( B - ( * ` B ) ) e. CC ) |
11 |
1 2 3
|
dvmptcj |
|- ( ph -> ( RR _D ( x e. X |-> ( * ` A ) ) ) = ( x e. X |-> ( * ` B ) ) ) |
12 |
5 1 2 3 6 9 11
|
dvmptsub |
|- ( ph -> ( RR _D ( x e. X |-> ( A - ( * ` A ) ) ) ) = ( x e. X |-> ( B - ( * ` B ) ) ) ) |
13 |
|
2mulicn |
|- ( 2 x. _i ) e. CC |
14 |
|
2muline0 |
|- ( 2 x. _i ) =/= 0 |
15 |
13 14
|
reccli |
|- ( 1 / ( 2 x. _i ) ) e. CC |
16 |
15
|
a1i |
|- ( ph -> ( 1 / ( 2 x. _i ) ) e. CC ) |
17 |
5 7 10 12 16
|
dvmptcmul |
|- ( ph -> ( RR _D ( x e. X |-> ( ( 1 / ( 2 x. _i ) ) x. ( A - ( * ` A ) ) ) ) ) = ( x e. X |-> ( ( 1 / ( 2 x. _i ) ) x. ( B - ( * ` B ) ) ) ) ) |
18 |
|
imval2 |
|- ( A e. CC -> ( Im ` A ) = ( ( A - ( * ` A ) ) / ( 2 x. _i ) ) ) |
19 |
1 18
|
syl |
|- ( ( ph /\ x e. X ) -> ( Im ` A ) = ( ( A - ( * ` A ) ) / ( 2 x. _i ) ) ) |
20 |
|
divrec2 |
|- ( ( ( A - ( * ` A ) ) e. CC /\ ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) -> ( ( A - ( * ` A ) ) / ( 2 x. _i ) ) = ( ( 1 / ( 2 x. _i ) ) x. ( A - ( * ` A ) ) ) ) |
21 |
13 14 20
|
mp3an23 |
|- ( ( A - ( * ` A ) ) e. CC -> ( ( A - ( * ` A ) ) / ( 2 x. _i ) ) = ( ( 1 / ( 2 x. _i ) ) x. ( A - ( * ` A ) ) ) ) |
22 |
7 21
|
syl |
|- ( ( ph /\ x e. X ) -> ( ( A - ( * ` A ) ) / ( 2 x. _i ) ) = ( ( 1 / ( 2 x. _i ) ) x. ( A - ( * ` A ) ) ) ) |
23 |
19 22
|
eqtrd |
|- ( ( ph /\ x e. X ) -> ( Im ` A ) = ( ( 1 / ( 2 x. _i ) ) x. ( A - ( * ` A ) ) ) ) |
24 |
23
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( Im ` A ) ) = ( x e. X |-> ( ( 1 / ( 2 x. _i ) ) x. ( A - ( * ` A ) ) ) ) ) |
25 |
24
|
oveq2d |
|- ( ph -> ( RR _D ( x e. X |-> ( Im ` A ) ) ) = ( RR _D ( x e. X |-> ( ( 1 / ( 2 x. _i ) ) x. ( A - ( * ` A ) ) ) ) ) ) |
26 |
|
imval2 |
|- ( B e. CC -> ( Im ` B ) = ( ( B - ( * ` B ) ) / ( 2 x. _i ) ) ) |
27 |
8 26
|
syl |
|- ( ( ph /\ x e. X ) -> ( Im ` B ) = ( ( B - ( * ` B ) ) / ( 2 x. _i ) ) ) |
28 |
|
divrec2 |
|- ( ( ( B - ( * ` B ) ) e. CC /\ ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) -> ( ( B - ( * ` B ) ) / ( 2 x. _i ) ) = ( ( 1 / ( 2 x. _i ) ) x. ( B - ( * ` B ) ) ) ) |
29 |
13 14 28
|
mp3an23 |
|- ( ( B - ( * ` B ) ) e. CC -> ( ( B - ( * ` B ) ) / ( 2 x. _i ) ) = ( ( 1 / ( 2 x. _i ) ) x. ( B - ( * ` B ) ) ) ) |
30 |
10 29
|
syl |
|- ( ( ph /\ x e. X ) -> ( ( B - ( * ` B ) ) / ( 2 x. _i ) ) = ( ( 1 / ( 2 x. _i ) ) x. ( B - ( * ` B ) ) ) ) |
31 |
27 30
|
eqtrd |
|- ( ( ph /\ x e. X ) -> ( Im ` B ) = ( ( 1 / ( 2 x. _i ) ) x. ( B - ( * ` B ) ) ) ) |
32 |
31
|
mpteq2dva |
|- ( ph -> ( x e. X |-> ( Im ` B ) ) = ( x e. X |-> ( ( 1 / ( 2 x. _i ) ) x. ( B - ( * ` B ) ) ) ) ) |
33 |
17 25 32
|
3eqtr4d |
|- ( ph -> ( RR _D ( x e. X |-> ( Im ` A ) ) ) = ( x e. X |-> ( Im ` B ) ) ) |